
Page | 1

JavaScript

Table of Contents:
➢ Overview

➢ Syntax

➢ Enabling JavaScript in Browsers

➢ Placement in HTML File

➢ Variables

➢ Operators

➢ if...else Statement

➢ Switch Case

➢ While Loops

➢ For Loop

➢ for...in loop

➢ Loop Control

➢ Functions

➢ Events

➢ JavaScript and Cookies

➢ Page Redirection

➢ Dialog Boxes

➢ Void Keyword

➢ Page Printing

➢ Objects Overview

➢ The Number Object

➢ The Boolean Object

➢ The Strings Object

➢ The Arrays Object

➢ The Date Object

➢ The Math Object

➢ Regular Expressions and RegExp Object

Page | 2

➢ Document Object Model or DOM

➢ Errors & Exceptions Handling

➢ Form Validation

➢ Animation

➢ Multimedia

➢ Debugging

➢ Image Map

➢ Browsers Compatibility

Page | 3

Overview
What is JavaScript?
JavaScript is a dynamic computer programming language. It is lightweight and most
commonly used as a part of web pages, whose implementations allow client-side script
to interact with the user and make dynamic pages. It is an interpreted programming
language with object-oriented capabilities.

JavaScript was first known as LiveScript, but Netscape changed its name to JavaScript,
possibly because of the excitement being generated by Java. JavaScript made its first
appearance in Netscape 2.0 in 1995 with the name LiveScript. The general-purpose
core of the language has been embedded in Netscape, Internet Explorer, and other web
browsers.

The ECMA-262 Specification defined a standard version of the core JavaScript
language.

• JavaScript is a lightweight, interpreted programming language.
• Designed for creating network-centric applications.
• Complementary to and integrated with Java.
• Complementary to and integrated with HTML.
• Open and cross-platform

Client-Side JavaScript
Client-side JavaScript is the most common form of the language. The script should be
included in or referenced by an HTML document for the code to be interpreted by the
browser.

It means that a web page need not be a static HTML, but can include programs that
interact with the user, control the browser, and dynamically create HTML content.

The JavaScript client-side mechanism provides many advantages over traditional CGI
server-side scripts. For example, you might use JavaScript to check if the user has
entered a valid e-mail address in a form field.

The JavaScript code is executed when the user submits the form, and only if all the
entries are valid, they would be submitted to the Web Server.

JavaScript can be used to trap user-initiated events such as button clicks, link navigation,
and other actions that the user initiates explicitly or implicitly.

http://www.ecma-international.org/publications/index.html

Page | 4

Advantages of JavaScript
The merits of using JavaScript are:

• Less server interaction − You can validate user input before sending the page
off to the server. This saves server traffic, which means less load on your server.

• Immediate feedback to the visitors − They don't have to wait for a page reload
to see if they have forgotten to enter something.

• Increased interactivity − You can create interfaces that react when the user
hovers over them with a mouse or activates them via the keyboard.

• Richer interfaces − You can use JavaScript to include such items as drag-and-
drop components and sliders to give a Rich Interface to your site visitors.

Limitations of JavaScript
We cannot treat JavaScript as a full-fledged programming language. It lacks the following
important features:

• Client-side JavaScript does not allow the reading or writing of files. This has been
kept for security reason.

• JavaScript cannot be used for networking applications because there is no such
support available.

• JavaScript doesn't have any multi-threading or multiprocessor capabilities.

Once again, JavaScript is a lightweight, interpreted programming language that allows
you to build interactivity into otherwise static HTML pages.

JavaScript Development Tools
One of major strengths of JavaScript is that it does not require expensive development
tools. You can start with a simple text editor such as Notepad. Since it is an interpreted
language inside the context of a web browser, you don't even need to buy a compiler.
To make our life simpler, various vendors have come up with very nice JavaScript editing
tools. Some of them are listed here:

• Microsoft FrontPage − Microsoft has developed a popular HTML editor called
FrontPage. FrontPage also provides web developers with a number of JavaScript
tools to assist in the creation of interactive websites.

• Macromedia Dreamweaver MX − Macromedia Dreamweaver MX is a very
popular HTML and JavaScript editor in the professional web development crowd.
It provides several handy prebuilt JavaScript components, integrates well with
databases, and conforms to new standards such as XHTML and XML.

• Macromedia HomeSite 5 − HomeSite 5 is a well-liked HTML and JavaScript
editor from Macromedia that can be used to manage personal websites effectively.

Page | 5

Where is JavaScript Today?
The ECMAScript Edition 5 standard will be the first update to be released in over four
years. JavaScript 2.0 conforms to Edition 5 of the ECMAScript standard, and the
difference between the two is extremely minor.

The specification for JavaScript 2.0 can be found on the following
site: http://www.ecmascript.org/

Today, Netscape's JavaScript and Microsoft's JScript conform to the ECMAScript
standard, although both the languages still support the features that are not a part of the
standard.

http://www.ecmascript.org/

Page | 6

Syntax
JavaScript can be implemented using JavaScript statements that are placed within
the <script>... </script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within your web
page, but it is normally recommended that you should keep it within the <head> tags.

The <script> tag alerts the browser program to start interpreting all the text between
these tags as a script. A simple syntax of your JavaScript will appear as follows.

<script ...>

 JavaScript code

</script>

The script tag takes two important attributes:
• Language − This attribute specifies what scripting language you are using.

Typically, its value will be javascript. Although recent versions of HTML (and
XHTML, its successor) have phased out the use of this attribute.

• Type − This attribute is what is now recommended to indicate the scripting
language in use and its value should be set to "text/javascript".

So your JavaScript segment will look like:
<script>

 JavaScript code

</script>

Or for HTML5, just this
<script>

 JavaScript code

</script>

Your First JavaScript Code
Let us take a sample example to print out "Hello World". We added an optional HTML
comment that surrounds our JavaScript code. This is to save our code from a browser
that does not support JavaScript. The comment ends with a "//-->". Here "//" signifies a
comment in JavaScript, so we add that to prevent a browser from reading the end of the
HTML comment as a piece of JavaScript code. Next, we call a
function document.write which writes a string into our HTML document.

This function can be used to write text, HTML, or both. Take a look at the following code.

<html>

<body>

 <script>

 document.write("Hello World!")

 </script>

</body>

</html>

Page | 7

This code will produce the following result:
Hello World!

Whitespace and Line Breaks
JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs. You
can use spaces, tabs, and newlines freely in your program and you are free to format
and indent your programs in a neat and consistent way that makes the code easy to read
and understand.

Semicolons are Optional
Simple statements in JavaScript are generally followed by a semicolon character, just
as they are in C, C++, and Java. JavaScript, however, allows you to omit this semicolon
if each of your statements are placed on a separate line. For example, the following code
could be written without semicolons.

<script>

 var1 = 10

 var2 = 20

</script>

But when formatted in a single line as follows, you must use semicolons:

<script>

 var1 = 10; var2 = 20;

</script>

Note: It is a good programming practice to use semicolons.

Case Sensitivity
JavaScript is a case-sensitive language. This means that the language keywords,
variables, function names, and any other identifiers must always be typed with a
consistent capitalization of letters.

So, the identifiers Time and TIME will convey different meanings in JavaScript.

NOTE: Care should be taken while writing variable and function names in JavaScript.

Comments in JavaScript
JavaScript supports both C-style and C++-style comments, Thus:

• Any text between a // and the end of a line is treated as a comment and is ignored
by JavaScript.

• Any text between the characters /* and */ is treated as a comment. This may span
multiple lines.

• JavaScript also recognizes the HTML comment opening sequence <!--.
JavaScript treats this as a single-line comment, just as it does the // comment.

• The HTML comment closing sequence --> is not recognized by JavaScript so it
should be written as //-->.

Page | 8

Example

The following example shows how to use comments in JavaScript.

<script>

 // This is a comment. It is similar to comments in C++

 /*

 This is a multi-line comment in JavaScript

 It is very similar to comments in C Programming

 */

</script>

Page | 9

Enabling JavaScript in Browsers
All the modern browsers come with built-in support for JavaScript. Frequently, you may
need to enable or disable this support manually. This chapter explains the procedure of
enabling and disabling JavaScript support in your browsers: Internet Explorer, Firefox,
chrome, and Opera.

JavaScript in Internet Explorer
Here are simple steps to turn on or turn off JavaScript in your Internet Explorer:

• Follow Tools → Internet Options from the menu.
• Select Security tab from the dialog box.
• Click the Custom Level button.
• Scroll down till you find Scripting option.
• Select Enable radio button under Active scripting.
• Finally click OK and come out

To disable JavaScript support in your Internet Explorer, you need to select Disable radio
button under Active scripting.

JavaScript in Firefox
Here are the steps to turn on or turn off JavaScript in Firefox:

• Open a new tab → type about: config in the address bar.
• Then you will find the warning dialog. Select I’ll be careful, I promise!
• Then you will find the list of configure options in the browser.
• In the search bar, type javascript.enabled.
• There you will find the option to enable or disable javascript by right-clicking on

the value of that option → select toggle.

If javascript.enabled is true; it converts to false upon clicking toogle. If javascript is
disabled; it gets enabled upon clicking toggle.

JavaScript in Chrome
Here are the steps to turn on or turn off JavaScript in Chrome:

• Click the Chrome menu at the top right-hand corner of your browser.
• Select Settings.
• Click Show advanced settings at the end of the page.
• Under the Privacy section, click the Content settings button.
• In the "Javascript" section, select "Do not allow any site to run JavaScript" or

"Allow all sites to run JavaScript (recommended)".

Page | 10

JavaScript in Opera
Here are the steps to turn on or turn off JavaScript in Opera:

• Follow Tools → Preferences from the menu.
• Select Advanced option from the dialog box.
• Select Content from the listed items.
• Select Enable JavaScript checkbox.
• Finally click OK and come out.

To disable JavaScript support in your Opera, you should not select the Enable
JavaScript checkbox.

Warning for Non-JavaScript Browsers
If you have to do something important using JavaScript, then you can display a warning
message to the user using <noscript> tags.

You can add a noscript block immediately after the script block as follows:

<html>

<body>

 <script>

 document.write("Hello World!")

 </script>

 <noscript>

 Sorry...JavaScript is needed to go ahead.

 </noscript>

</body>

</html>

Now, if the user's browser does not support JavaScript or JavaScript is not enabled, then
the message from </noscript> will be displayed on the screen.

Page | 11

Placement in HTML File
There is a flexibility given to include JavaScript code anywhere in an HTML document.
However the most preferred ways to include JavaScript in an HTML file are as follows:

• Script in <head>...</head> section.
• Script in <body>...</body> section.
• Script in <body>...</body> and <head>...</head> sections.
• Script in an external file and then include in <head>...</head> section.

In the following section, we will see how we can place JavaScript in an HTML file in
different ways.

JavaScript in <head>...</head> section
If you want to have a script run on some event, such as when a user clicks somewhere,
then you will place that script in the head as follows:

<html>

<head>

 <script>

 function sayHello() {

 alert("Hello World")

 }

 </script>

</head>

<body>

 <input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following results:

JavaScript in <body>...</body> section
If you need a script to run as the page loads so that the script generates content in the
page, then the script goes in the <body> portion of the document. In this case, you would
not have any function defined using JavaScript. Take a look at the following code.

<html>

<head>

</head>

<body>

 <script>

 document.write("Hello World")

 </script>

 <p>This is web page body </p>

</body>

</html>

Page | 12

This code will produce the following results:

JavaScript in <body> and <head> Sections
You can put your JavaScript code in <head> and <body> section altogether as follows:

<html>

<head>

 <script>

 function sayHello() {

 alert("Hello World")

 }

 </script>

</head>

<body>

 <script>

 document.write("Hello World")

 </script>

 <input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following result:

JavaScript in External File
As you begin to work more extensively with JavaScript, you will be likely to find that there
are cases where you are reusing identical JavaScript code on multiple pages of a site.
You are not restricted to be maintaining identical code in multiple HTML files.
The script tag provides a mechanism to allow you to store JavaScript in an external file
and then include it into your HTML files.
Here is an example to show how you can include an external JavaScript file in your
HTML code using script tag and its src attribute.

<html>

<head>

 <script src="filename.js" ></script>

</head>

<body>

</body>

</html>

Page | 13

To use JavaScript from an external file source, you need to write all your JavaScript
source code in a simple text file with the extension ".js" and then include that file as
shown above.

For example, you can keep the following content in filename.js file and then you can
use sayHello function in your HTML file after including the filename.js file.

function sayHello() {

 alert("Hello World")

}

Page | 14

Variables
JavaScript Datatypes
One of the most fundamental characteristics of a programming language is the set of
data types it supports. These are the type of values that can be represented and
manipulated in a programming language.

JavaScript allows you to work with three primitive data types:
• Numbers, eg. 123, 120.50 etc.
• Strings of text e.g. "This text string" etc.
• Boolean e.g. true or false.

JavaScript also defines two trivial data types, null and undefined, each of which defines
only a single value. In addition to these primitive data types, JavaScript supports a
composite data type known as object. We will cover objects in detail in a separate
chapter.

Note: JavaScript does not make a distinction between integer values and floating-point
values. All numbers in JavaScript are represented as floating-point values. JavaScript
represents numbers using the 64-bit floating-point format defined by the IEEE 754
standard.

JavaScript Variables
Like many other programming languages, JavaScript has variables. Variables can be
thought of as named containers. You can place data into these containers and then refer
to the data simply by naming the container.

Before you use a variable in a JavaScript program, you must declare it. Variables are
declared with the var keyword as follows.

<script>

 var money;

 var name;

</script>

You can also declare multiple variables with the same var keyword as follows:

<script>

 var money, name;

</script>

Storing a value in a variable is called variable initialization. You can do variable
initialization at the time of variable creation or at a later point in time when you need that
variable.

Page | 15

For instance, you might create a variable named money and assign the value 2000.50
to it later. For another variable, you can assign a value at the time of initialization as
follows.

<script>

 var name = "Ali";

 var money;

 money = 2000.50;

</script>

Note: Use the var keyword only for declaration or initialization, once for the life of any
variable name in a document. You should not re-declare same variable twice.

JavaScript is untyped language. This means that a JavaScript variable can hold a value
of any data type. Unlike many other languages, you don't have to tell JavaScript during
variable declaration what type of value the variable will hold. The value type of a variable
can change during the execution of a program and JavaScript takes care of it
automatically.

JavaScript Variable Scope
The scope of a variable is the region of your program in which it is defined. JavaScript
variables have only two scopes.

• Global Variables − A global variable has global scope which means it can be
defined anywhere in your JavaScript code.

• Local Variables − A local variable will be visible only within a function where it is
defined. Function parameters are always local to that function.

Within the body of a function, a local variable takes precedence over a global variable
with the same name. If you declare a local variable or function parameter with the same
name as a global variable, you effectively hide the global variable. Take a look into the
following example.

<html>

<body onload=checkscope();>

 <script>

 var myVar = "global"; // Declare a global variable

 function checkscope() {

 var myVar = "local"; // Declare a local variable

 document.write(myVar);

 }

 </script>

</body>

</html>

This produces the following result:
local

Page | 16

JavaScript Variable Names
While naming your variables in JavaScript, keep the following rules in mind.

• You should not use any of the JavaScript reserved keywords as a variable name.
These keywords are mentioned in the next section. For
example, break or boolean variable names are not valid.

• JavaScript variable names should not start with a numeral (0-9). They must begin
with a letter or an underscore character. For example, 123test is an invalid
variable name but _123test is a valid one.

• JavaScript variable names are case-sensitive. For example, Name and name are
two different variables.

JavaScript Reserved Words
A list of all the reserved words in JavaScript are given in the following table. They cannot
be used as JavaScript variables, functions, methods, loop labels, or any object names.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

Page | 17

Operators
What is an Operator?
Let us take a simple expression 4 + 5 is equal to 9. Here 4 and 5 are
called operands and ‘+’ is called the operator. JavaScript supports the following types
of operators.

• Arithmetic Operators
• Comparison Operators
• Logical (or Relational) Operators
• Assignment Operators
• Conditional (or ternary) Operators

Let’s have a look on all operators one by one.

Arithmetic Operators
JavaScript supports the following arithmetic operators:
Assume variable A holds 10 and variable B holds 20, then:

No. Operator & Description

1 + (Addition)
Adds two operands
Ex: A + B will give 30

2 - (Subtraction)
Subtracts the second operand from the first
Ex: A - B will give -10

3 * (Multiplication)
Multiply both operands
Ex: A * B will give 200

4 / (Division)
Divide the numerator by the denominator
Ex: B / A will give 2

5 % (Modulus)
Outputs the remainder of an integer division
Ex: B % A will give 0

6 ++ (Increment)
Increases an integer value by one
Ex: A++ will give 11

7 -- (Decrement)
Decreases an integer value by one
Ex: A-- will give 9

Page | 18

Note: Addition operator (+) works for Numeric as well as Strings. e.g. "a" + 10 will give
"a10".

Example

The following code shows how to use arithmetic operators in JavaScript.

<html>

<body>

 <script>

 var a = 33;

 var b = 10;

 var c = "Test";

 var linebreak = "
";

 document.write("a + b = ");

 result = a + b;

 document.write(result);

 document.write(linebreak);

 document.write("a - b = ");

 result = a - b;

 document.write(result);

 document.write(linebreak);

 document.write("a / b = ");

 result = a / b;

 document.write(result);

 document.write(linebreak);

 document.write("a % b = ");

 result = a % b;

 document.write(result);

 document.write(linebreak);

 document.write("a + b + c = ");

 result = a + b + c;

 document.write(result);

 document.write(linebreak);

 a = ++a;

 document.write("++a = ");

 result = ++a;

 document.write(result);

 document.write(linebreak);

 b = --b;

 document.write("--b = ");

 result = --b;

 document.write(result);

 document.write(linebreak);

 </script>

 Set the variables to different values and then try...

</body>

</html>

Page | 19

Output
a + b = 43

a - b = 23

a / b = 3.3

a % b = 3

a + b + c = 43Test

++a = 35

--b = 8

Set the variables to different values and then try...

Comparison Operators
JavaScript supports the following comparison operators:
Assume variable A holds 10 and variable B holds 20, then:

No. Operator & Description

1 = = (Equal)
Checks if the value of two operands are equal or not, if yes, then the condition
becomes true.
Ex: (A == B) is not true.

2 != (Not Equal)
Checks if the value of two operands are equal or not, if the values are not equal,
then the condition becomes true.
Ex: (A != B) is true.

3 > (Greater than)
Checks if the value of the left operand is greater than the value of the right
operand, if yes, then the condition becomes true.
Ex: (A > B) is not true.

4 < (Less than)
Checks if the value of the left operand is less than the value of the right operand,
if yes, then the condition becomes true.
Ex: (A < B) is true.

5 >= (Greater than or Equal to)
Checks if the value of the left operand is greater than or equal to the value of the
right operand, if yes, then the condition becomes true.
Ex: (A >= B) is not true.

6 <= (Less than or Equal to)
Checks if the value of the left operand is less than or equal to the value of the
right operand, if yes, then the condition becomes true.
Ex: (A <= B) is true.

Page | 20

Example

The following code shows how to use comparison operators in JavaScript.

<html>

<body>

 <script>

 var a = 10;

 var b = 20;

 var linebreak = "
";

 document.write("(a == b) => ");

 result = (a == b);

 document.write(result);

 document.write(linebreak);

 document.write("(a < b) => ");

 result = (a < b);

 document.write(result);

 document.write(linebreak);

 document.write("(a > b) => ");

 result = (a > b);

 document.write(result);

 document.write(linebreak);

 document.write("(a != b) => ");

 result = (a != b);

 document.write(result);

 document.write(linebreak);

 document.write("(a >= b) => ");

 result = (a >= b);

 document.write(result);

 document.write(linebreak);

 document.write("(a <= b) => ");

 result = (a <= b);

 document.write(result);

 document.write(linebreak);

 </script>

 Set the variables to different values and different operators and

then try...

</body>

</html>

Output
(a == b) => false

(a < b) => true

(a > b) => false

(a != b) => true

(a >= b) => false

a <= b) => true

Set the variables to different values and different operators and

then try...

Page | 21

Logical Operators
JavaScript supports the following logical operators:
Assume variable A holds 10 and variable B holds 20, then:

No. Operator & Description

1 && (Logical AND)
If both the operands are non-zero, then the condition becomes true.
Ex: (A && B) is true.

2 || (Logical OR)
If any of the two operands are non-zero, then the condition becomes true.
Ex: (A || B) is true.

3 ! (Logical NOT)
Reverses the logical state of its operand. If a condition is true, then the Logical
NOT operator will make it false.
Ex: ! (A && B) is false.

Example

Try the following code to learn how to implement Logical Operators in JavaScript.

<html>

<body>

 <script>

 var a = true;

 var b = false;

 var linebreak = "
";

 document.write("(a && b) => ");

 result = (a && b);

 document.write(result);

 document.write(linebreak);

 document.write("(a || b) => ");

 result = (a || b);

 document.write(result);

 document.write(linebreak);

 document.write("!(a && b) => ");

 result = (!(a && b));

 document.write(result);

 document.write(linebreak);

 </script>

 <p>Set the variables to different values and different operators

and then try...</p>

</body>

</html>

Page | 22

Output
(a && b) => false

(a || b) => true

!(a && b) => true

Set the variables to different values and different operators and

then try...

Bitwise Operators
JavaScript supports the following bitwise operators:
Assume variable A holds 2 and variable B holds 3, then:

No. Operator & Description

1 & (Bitwise AND)
It performs a Boolean AND operation on each bit of its integer arguments.
Ex: (A & B) is 2.

2 | (BitWise OR)
It performs a Boolean OR operation on each bit of its integer arguments.
Ex: (A | B) is 3.

3 ^ (Bitwise XOR)
It performs a Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one is true or operand two
is true, but not both.
Ex: (A ^ B) is 1.

4 ~ (Bitwise Not)
It is a unary operator and operates by reversing all the bits in the operand.
Ex: (~B) is -4.

5 << (Left Shift)
It moves all the bits in its first operand to the left by the number of places
specified in the second operand. New bits are filled with zeros. Shifting a value
left by one position is equivalent to multiplying it by 2, shifting two positions is
equivalent to multiplying by 4, and so on.
Ex: (A << 1) is 4.

6 >> (Right Shift)
Binary Right Shift Operator. The left operand’s value is moved right by the
number of bits specified by the right operand.
Ex: (A >> 1) is 1.

7 >>> (Right shift with Zero)
This operator is just like the >> operator, except that the bits shifted in on the left
are always zero.
Ex: (A >>> 1) is 1.

Page | 23

Example

Try the following code to implement Bitwise operator in JavaScript.

<html>

<body>

 <script>

 var a = 2; // Bit presentation 10

 var b = 3; // Bit presentation 11

 var linebreak = "
";

 document.write("(a & b) => ");

 result = (a & b);

 document.write(result);

 document.write(linebreak);

 document.write("(a | b) => ");

 result = (a | b);

 document.write(result);

 document.write(linebreak);

 document.write("(a ^ b) => ");

 result = (a ^ b);

 document.write(result);

 document.write(linebreak);

 document.write("(~b) => ");

 result = (~b);

 document.write(result);

 document.write(linebreak);

 document.write("(a << b) => ");

 result = (a << b);

 document.write(result);

 document.write(linebreak);

 document.write("(a >> b) => ");

 result = (a >> b);

 document.write(result);

 document.write(linebreak);

 </script>

 <p>Set the variables to different values and different operators

and then try...</p>

</body>

</html>

Output
(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(~b) => -4

(a << b) => 16

(a >> b) => 0

Set the variables to different values and different operators and

then try...

Page | 24

Assignment Operators
JavaScript supports the following assignment operators:

No. Operator & Description

1 = (Simple Assignment)
Assigns values from the right side operand to the left side operand
Ex: C = A + B will assign the value of A + B into C

2 += (Add and Assignment)
It adds the right operand to the left operand and assigns the result to the left
operand.
Ex: C += A is equivalent to C = C + A

3 −= (Subtract and Assignment)
It subtracts the right operand from the left operand and assigns the result to the
left operand.
Ex: C -= A is equivalent to C = C - A

4 *= (Multiply and Assignment)
It multiplies the right operand with the left operand and assigns the result to the
left operand.
Ex: C *= A is equivalent to C = C * A

5 /= (Divide and Assignment)
It divides the left operand with the right operand and assigns the result to the left
operand.
Ex: C /= A is equivalent to C = C / A

6 %= (Modules and Assignment)
It takes modulus using two operands and assigns the result to the left operand.
Ex: C %= A is equivalent to C = C % A

Note: Same logic applies to Bitwise operators so they will become like <<=, >>=, >>=,
&=, |= and ^=.

Example

Try the following code to implement assignment operator in JavaScript.

<html>

<body>

 <script>

 var a = 33;

 var b = 10;

 var linebreak = "
";

 document.write("Value of a => (a = b) => ");

 result = (a = b);

 document.write(result);

 document.write(linebreak);

Page | 25

 document.write("Value of a => (a += b) => ");

 result = (a += b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a -= b) => ");

 result = (a -= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a *= b) => ");

 result = (a *= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a /= b) => ");

 result = (a /= b);

 document.write(result);

 document.write(linebreak);

 document.write("Value of a => (a %= b) => ");

 result = (a %= b);

 document.write(result);

 document.write(linebreak);

 </script>

 <p>Set the variables to different values and different operators

and then try...</p>

</body>

</html>

Output
Value of a => (a = b) => 10

Value of a => (a += b) => 20

Value of a => (a -= b) => 10

Value of a => (a *= b) => 100

Value of a => (a /= b) => 10

Value of a => (a %= b) => 0

Set the variables to different values and different operators and

then try...

Page | 26

Miscellaneous Operator
We will discuss two operators here that are quite useful in JavaScript: the conditional
operator (? :) and the typeof operator.
Conditional Operator (? :)

The conditional operator first evaluates an expression for a true or false value and then
executes one of the two given statements depending upon the result of the evaluation.

No. Operator and Description

1 ? : (Conditional)
If Condition is true? Then value X : Otherwise value Y

Example

Try the following code to understand how the Conditional Operator works in JavaScript.

<html>

<body>

 <script>

 var a = 10;

 var b = 20;

 var linebreak = "
";

 document.write ("((a > b) ? 100 : 200) => ");

 result = (a > b) ? 100 : 200;

 document.write(result);

 document.write(linebreak);

 document.write ("((a < b) ? 100 : 200) => ");

 result = (a < b) ? 100 : 200;

 document.write(result);

 document.write(linebreak);

 </script>

 <p>Set the variables to different values and different operators

and then try...</p>

</body>

</html>

Output
((a > b) ? 100 : 200) => 200

((a < b) ? 100 : 200) => 100

Set the variables to different values and different operators and

then try...

Page | 27

typeof Operator
The typeof operator is a unary operator that is placed before its single operand, which
can be of any type. Its value is a string indicating the data type of the operand.
The typeof operator evaluates to "number", "string", or "boolean" if its operand is a
number, string, or boolean value and returns true or false based on the evaluation.
Here is a list of the return values for the typeof Operator.

Type String Returned by typeof

Number "number"

String "string"

Boolean "boolean"

Object "object"

Function "function"

Undefined "undefined"

Null "object"

Example

The following code shows how to implement typeof operator.

<html>

<body>

 <script>

 var a = 10;

 var b = "String";

 var linebreak = "
";

 result = (typeof b == "string" ? "B is String" : "B is Numeric");

 document.write("Result => ");

 document.write(result);

 document.write(linebreak);

 result = (typeof a == "string" ? "A is String" : "A is Numeric");

 document.write("Result => ");

 document.write(result);

 document.write(linebreak);

 </script>

 <p>Set the variables to different values and different operators

and then try...</p>

</body>

</html>

Page | 28

Output
Result => B is String

Result => A is Numeric

Set the variables to different values and different operators and

then try...

Page | 29

if...else Statement
While writing a program, there may be a situation when you need to adopt one out of a
given set of paths. In such cases, you need to use conditional statements that allow your
program to make correct decisions and perform right actions.

JavaScript supports conditional statements which are used to perform different actions
based on different conditions. Here we will explain the if..else statement.

Flow Chart of if-else
The following flow chart shows how the if-else statement works.

JavaScript supports the following forms of if..else statement:

• if statement
• if...else statement
• if...else if... statement.

if statement
The if statement is the fundamental control statement that allows JavaScript to make
decisions and execute statements conditionally.

Syntax

The syntax for a basic if statement is as follows:
if (expression) {

 Statement(s) to be executed if expression is true

}

Page | 30

Here a JavaScript expression is evaluated. If the resulting value is true, the given
statement(s) are executed. If the expression is false, then no statement would be not
executed. Most of the times, you will use comparison operators while making decisions.

Example

Try the following example to understand how the if statement works.
<html>

<body>

 <script>

 var age = 20;

 if(age > 18) {

 document.write("Qualifies for driving");

 }

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Qualifies for driving

Set the variable to different value and then try...

if...else statement
The 'if...else' statement is the next form of control statement that allows JavaScript to
execute statements in a more controlled way.
Syntax

if (expression) {

 Statement(s) to be executed if expression is true

} else {

 Statement(s) to be executed if expression is false

}

Here JavaScript expression is evaluated. If the resulting value is true, the given
statement(s) in the ‘if’ block, are executed. If the expression is false, then the given
statement(s) in the else block are executed.
Example

Try the following code to learn how to implement an if-else statement in JavaScript.

<html>

<body>

 <script>

 var age = 15;

 if(age > 18) {

 document.write("Qualifies for driving");

 } else {

 document.write("Does not qualify for driving");

 }

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Page | 31

Output
Does not qualify for driving

Set the variable to different value and then try...

if...else if... statement
The if...else if... statement is an advanced form of if…else that allows JavaScript to
make a correct decision out of several conditions.

Syntax

The syntax of an if-else-if statement is as follows:
if (expression 1) {

 Statement(s) to be executed if expression 1 is true

} else if (expression 2) {

 Statement(s) to be executed if expression 2 is true

} else if (expression 3) {

 Statement(s) to be executed if expression 3 is true

} else {

 Statement(s) to be executed if no expression is true

}

There is nothing special about this code. It is just a series of if statements, where
each if is a part of the else clause of the previous statement. Statement(s) are executed
based on the true condition, if none of the conditions is true, then the else block is
executed.

Example

Try the following code to learn how to implement an if-else-if statement in JavaScript.

<html>

<body>

 <script>

 var book = "maths";

 if(book == "history") {

 document.write("History Book");

 } else if(book == "maths") {

 document.write("Maths Book");

 } else if(book == "economics") {

 document.write("Economics Book");

 } else {

 document.write("Unknown Book");

 }

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

<html>

Output
Maths Book

Set the variable to different value and then try...

Page | 32

Switch Case
You can use multiple if...else…if statements, as in the previous chapter, to perform a
multiway branch. However, this is not always the best solution, especially when all of the
branches depend on the value of a single variable.

Starting with JavaScript 1.2, you can use a switch statement which handles exactly this
situation, and it does so more efficiently than repeated if...else if statements.

Flow Chart
The following flow chart explains a switch-case statement works.

Page | 33

Syntax

The objective of a switch statement is to give an expression to evaluate and several
different statements to execute based on the value of the expression. The interpreter
checks each case against the value of the expression until a match is found. If nothing
matches, a default condition will be used.
switch (expression) {

 case condition 1:

 statement(s)

 break;

 case condition 2:

 statement(s)

 break;

 ...

 case condition n:

 statement(s)

 break;

 [default: statement(s)]

}

The break statements indicate the end of a particular case. If they were omitted, the
interpreter would continue executing each statement in each of the following cases.
We will explain break statement in Loop Control chapter.

Example

Try the following example to implement switch-case statement.

<html>

<body>

 <script>

 var grade = 'A';

 document.write("Entering switch block
");

 switch (grade) {

 case 'A':

 document.write("Good job
");

 break;

 case 'B':

 document.write("Pretty good
");

 break;

 case 'C':

 document.write("Passed
");

 break;

 case 'D':

 document.write("Not so good
");

 break;

 case 'F':

 document.write("Failed
");

 break;

Page | 34

 default:

 document.write("Unknown grade
")

 }

 document.write("Exiting switch block");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Entering switch block

Good job

Exiting switch block

Set the variable to different value and then try...

Break statements play a major role in switch-case statements. Try the following code
that uses switch-case statement without any break statement.

<html>

<body>

 <script>

 var grade = 'A';

 document.write("Entering switch block
");

 switch (grade) {

 case 'A': document.write("Good job
");

 case 'B': document.write("Pretty good
");

 case 'C': document.write("Passed
");

 case 'D': document.write("Not so good
");

 case 'F': document.write("Failed
");

 default: document.write("Unknown grade
")

 }

 document.write("Exiting switch block");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Entering switch block

Good job

Pretty good

Passed

Not so good

Failed

Unknown grade

Exiting switch block

Set the variable to different value and then try...

Page | 35

While Loops
While writing a program, you may encounter a situation where you need to perform an
action over and over again. In such situations, you would need to write loop statements
to reduce the number of lines.

JavaScript supports all the necessary loops to ease down the pressure of programming.

The while Loop
The most basic loop in JavaScript is the while loop which would be discussed in this
chapter. The purpose of a while loop is to execute a statement or code block repeatedly
as long as an expression is true. Once the expression becomes false, the loop
terminates.

Flow Chart

The flow chart of while loop looks as follows:

Syntax

The syntax of while loop in JavaScript is as follows:
while (expression) {

 Statement(s) to be executed if expression is true

}

Page | 36

Example

Try the following example to implement while loop.

<html>

<body>

 <script>

 var count = 0;

 document.write("Starting Loop ");

 while (count < 10) {

 document.write("Current Count : " + count + "
");

 count++;

 }

 document.write("Loop stopped!");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

Set the variable to different value and then try...

The do...while Loop
The do...while loop is similar to the while loop except that the condition check happens
at the end of the loop. This means that the loop will always be executed at least once,
even if the condition is false.

Flow Chart

The flow chart of a do-while loop would be as follows:

Page | 37

Syntax

The syntax for do-while loop in JavaScript is as follows:
do {

 Statement(s) to be executed;

} while (expression);

Note: Don’t miss the semicolon used at the end of the do...while loop.

Example

Try the following example to learn how to implement a do-while loop in JavaScript.

<html>

<body>

 <script>

 var count = 0;

 document.write("Starting Loop" + "
");

 do {

 document.write("Current Count : " + count + "
");

 count++;

 }

 while (count < 5);

 document.write ("Loop stopped!");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Page | 38

Output
Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Loop Stopped!

Set the variable to different value and then try...

Page | 39

For Loop
The 'for' loop is the most compact form of looping. It includes the following three
important parts:

• The loop initialization where we initialize our counter to a starting value. The
initialization statement is executed before the loop begins.

• The test statement which will test if a given condition is true or not. If the condition
is true, then the code given inside the loop will be executed, otherwise the control
will come out of the loop.

• The iteration statement where you can increase or decrease your counter.

You can put all the three parts in a single line separated by semicolons.

Flow Chart
The flow chart of a for loop in JavaScript would be as follows:

Syntax

The syntax of for loop is JavaScript is as follows:
for (initialization; test condition; iteration statement) {

 Statement(s) to be executed if test condition is true

}

Page | 40

Example

Try the following example to learn how a for loop works in JavaScript.

<html>

<body>

 <script>

 document.write("Starting Loop" + "
");

 for(var count = 0; count < 10; count++) {

 document.write("Current Count : " + count);

 document.write("
");

 }

 document.write("Loop stopped!");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

Set the variable to different value and then try...

Page | 41

for...in loop
The for...in loop is used to loop through an object's properties. As we have not discussed
Objects yet, you may not feel comfortable with this loop. But once you understand how
objects behave in JavaScript, you will find this loop very useful.

Syntax
The syntax of ‘for..in’ loop is:

for (variablename in object) {

 statement or block to execute

}

In each iteration, one property from object is assigned to variablename and this loop
continues till all the properties of the object are exhausted.

Example

Try the following example to implement ‘for-in’ loop. It prints the web
browser’s Navigator object.

<html>

<body>

 <script>

 document.write("Navigator Object Properties
 ");

 for (var aProperty in navigator) {

 document.write(aProperty);

 document.write("
");

 }

 document.write ("Exiting from the loop!");

 </script>

 <p>Set the variable to different object and then try...</p>

</body>

</html>

Output
Navigator Object Properties

serviceWorker

webkitPersistentStorage

webkitTemporaryStorage

geolocation

doNotTrack

onLine

languages

language

userAgent

product

platform

appVersion

appName

appCodeName

Page | 42

hardwareConcurrency

maxTouchPoints

vendorSub

vendor

productSub

cookieEnabled

mimeTypes

plugins

javaEnabled

getStorageUpdates

getGamepads

webkitGetUserMedia

vibrate

getBattery

sendBeacon

registerProtocolHandler

unregisterProtocolHandler

Exiting from the loop!

Set the variable to different object and then try...

Page | 43

Loop Control
JavaScript provides full control to handle loops and switch statements. There may be a
situation when you need to come out of a loop without reaching its bottom. There may
also be a situation when you want to skip a part of your code block and start the next
iteration of the loop.

To handle all such situations, JavaScript provides break and continue statements.
These statements are used to immediately come out of any loop or to start the next
iteration of any loop respectively.

The break Statement
The break statement, which was briefly introduced with the switch statement, is used to
exit a loop early, breaking out of the enclosing curly braces.

Flow Chart

The flow chart of a break statement would look as follows:

Example

The following example illustrates the use of a break statement with a while loop. Notice
how the loop breaks out early once x reaches 5 and reaches to document.write
(..) statement just below to the closing curly brace:

<html>

<body>

 <script>

 var x = 1;

 document.write("Entering the loop
 ");

 while (x < 20) {

 if (x == 5) break; // breaks out of loop completely

 x = x + 1;

 document.write(x + "
");

 }

 document.write("Exiting the loop!
 ");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Page | 44

Output
Entering the loop

2

3

4

5

Exiting the loop!

Set the variable to different value and then try...

We already have seen the usage of break statement inside a switch statement.

The continue Statement
The continue statement tells the interpreter to immediately start the next iteration of the
loop and skip the remaining code block. When a continue statement is encountered, the
program flow moves to the loop check expression immediately and if the condition
remains true, then it starts the next iteration, otherwise the control comes out of the loop.

Example

This example illustrates the use of a continue statement with a while loop. Notice how
the continue statement is used to skip printing when the index held in variable x reaches
5:

<html>

<body>

 <script>

 var x = 1;

 document.write("Entering the loop
 ");

 while (x < 10) {

 x = x + 1;

 if (x == 5) continue; // skip rest of the loop body

 document.write(x + "
");

 }

 document.write("Exiting the loop!
 ");

 </script>

 <p>Set the variable to different value and then try...</p>

</body>

</html>

Output
Entering the loop

2

3

4

6

7

8

9

10

Exiting the loop!

Set the variable to different value and then try...

Page | 45

Using Labels to Control the Flow
Starting from JavaScript 1.2, a label can be used with break and continue to control the
flow more precisely. A label is simply an identifier followed by a colon (:) that is applied
to a statement or a block of code. We will see two different examples to understand how
to use labels with break and continue.

Note: Line breaks are not allowed between the ‘continue’ or ‘break’ statement and its
label name. Also, there should not be any other statement in between a label name and
associated loop.

Try the following two examples for a better understanding of Labels.

Example 1

The following example shows how to implement Label with a break statement.

<html>

<body>

 <script>

 document.write("Entering the loop!
 ");

 outerloop: // This is the label name

 for (var i = 0; i < 5; i++) {

 document.write("Outerloop: " + i + "
");

 innerloop:

 for (var j = 0; j < 5; j++) {

 if (j > 3) break ; // Quit the innermost loop

 if (i == 2) break innerloop; // Do the same thing

 if (i == 4) break outerloop; // Quit the outer loop

 document.write("Innerloop: " + j + "
");

 }

 }

 document.write("Exiting the loop!
 ");

 </script>

</body>

</html>

Output
Entering the loop!

Outerloop: 0

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 1

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 2

Outerloop: 3

Page | 46

Innerloop: 0

Innerloop: 1

Innerloop: 2

Innerloop: 3

Outerloop: 4

Exiting the loop!

Example 2

<html>

<body>

 <script>

 document.write("Entering the loop!
 ");

 outerloop: // This is the label name

 for (var i = 0; i < 3; i++) {

 document.write("Outerloop: " + i + "
");

 for (var j = 0; j < 5; j++) {

 if (j == 3) continue outerloop;

 document.write("Innerloop: " + j + "
");

 }

 }

 document.write("Exiting the loop!
 ");

 </script>

</body>

</html>

Output
Entering the loop!

Outerloop: 0

Innerloop: 0

Innerloop: 1

Innerloop: 2

Outerloop: 1

Innerloop: 0

Innerloop: 1

Innerloop: 2

Outerloop: 2

Innerloop: 0

Innerloop: 1

Innerloop: 2

Exiting the loop!

Page | 47

Functions
A function is a group of reusable code which can be called anywhere in your program.
This eliminates the need of writing the same code again and again. It helps programmers
in writing modular codes. Functions allow a programmer to divide a big program into a
number of small and manageable functions.

Like any other advanced programming language, JavaScript also supports all the
features necessary to write modular code using functions. You must have seen functions
like alert() and write() in the earlier chapters. We were using these functions again and
again, but they had been written in core JavaScript only once.

JavaScript allows us to write our own functions as well. This section explains how to
write your own functions in JavaScript.

Function Definition
Before we use a function, we need to define it. The most common way to define a
function in JavaScript is by using the function keyword, followed by a unique function
name, a list of parameters (that might be empty), and a statement block surrounded by
curly braces.

Syntax

The basic syntax is shown here.
<script>

 function functionname(parameter-list) {

 statements

 }

</script>

Example

Try the following example. It defines a function called sayHello that takes no parameters:

<script>

 function sayHello() {

 alert("Hello there");

 }

</script>

Calling a Function
To invoke a function somewhere later in the script, you would simply need to write the
name of that function as shown in the following code.

<html>

<head>

 <script>

 function sayHello() {

 document.write ("Hello there!");

 }

 </script>

</head>

Page | 48

<body>

 <p>Click the following button to call the function</p>

 <form>

 <input type="button" onclick="sayHello()" value="Say Hello">

 </form>

 <p>Use different text in write method and then try...</p>

</body>

</html>

Output

Function Parameters
Till now, we have seen functions without parameters. But there is a facility to pass
different parameters while calling a function. These passed parameters can be captured
inside the function and any manipulation can be done over those parameters. A function
can take multiple parameters separated by comma.

Example

Try the following example. We have modified our sayHello function here. Now it takes
two parameters.

<html>

<head>

 <script>

 function sayHello(name, age) {

 document.write (name + " is " + age + " years old.");

 }

 </script>

</head>

<body>

 <p>Click the following button to call the function</p>

 <form>

<input type="button" onclick="sayHello('Zara', 7)"

 value="Say Hello" />

 </form>

 <p>Use different parameters inside the function and then try...</p>

</body>

</html>

Page | 49

Output

The return Statement
A JavaScript function can have an optional return statement. This is required if you want
to return a value from a function. This statement should be the last statement in a function.
For example, you can pass two numbers in a function and then you can expect the
function to return their multiplication in your calling program.

Example

Try the following example. It defines a function that takes two parameters and
concatenates them before returning the resultant in the calling program.

<html>

<head>

 <script>

 function concatenate(first, last) {

 var full;

 full = first + last;

 return full;

 }

 function secondFunction() {

 var result;

 result = concatenate('Zara', 'Ali');

 document.write (result);

 }

 </script>

</head>

<body>

 <p>Click the following button to call the function</p>

 <form>

<input type="button" onclick="secondFunction()"

 value="Call Function"\>

 </form>

 <p>Use different parameters inside the function and then try...</p>

</body>

</html>

Page | 50

Output

Page | 51

Events
What is an Event?
JavaScript's interaction with HTML is handled through events that occur when the user
or the browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button, that click too
is an event. Other examples include events like pressing any key, closing a window,
resizing a window, etc.

Developers can use these events to execute JavaScript coded responses, which cause
buttons to close windows, messages to be displayed to users, data to be validated, and
virtually any other type of response imaginable.

Events are a part of the Document Object Model (DOM) Level 3 and every HTML
element contains a set of events which can trigger JavaScript Code.

Please go through this small course for a better understanding HTML Event Reference.
Here we will see a few examples to understand a relation between Event and JavaScript:

onclick Event Type
This is the most frequently used event type which occurs when a user clicks the left
button of his mouse. You can put your validation, warning etc., against this event type.

Example

Try the following example.

<html>

<head>

 <script>

 function sayHello() {

 alert("Hello World")

 }

 </script>

</head>

<body>

 <p>Click the following button and see result</p>

 <form>

 <input type="button" onclick="sayHello()" value="Say Hello" />

 </form>

</body>

</html>

Output

https://www.tutorialspoint.com/html/html_events_ref.htm

Page | 52

onsubmit Event Type
onsubmit is an event that occurs when you try to submit a form. You can put your form
validation against this event type.

Example

The following example shows how to use onsubmit. Here we are calling
a validate() function before submitting a form data to the webserver.
If validate() function returns true, the form will be submitted, otherwise it will not submit
the data.

Try the following example.

<html>

<head>

 <script>

 function validation() {

 all validation goes here

 return either true or false

 }

 </script>

</head>

<body>

 <form method="POST" action="t.cgi" onsubmit="return validate()">

 <input type="submit" value="Submit" />

 </form>

</body>

</html>

onmouseover and onmouseout
These two event types will help you create nice effects with images or even with text as
well. The onmouseover event triggers when you bring your mouse over any element
and the onmouseout triggers when you move your mouse out from that element. Try
the following example.

<html>

<head>

 <script>

 function over() {

 document.write ("Mouse Over");

 }

 function out() {

 document.write ("Mouse Out");

 }

 </script>

</head>

<body>

 <p>Bring your mouse inside the division to see the result:</p>

 <div onmouseover="over()" onmouseout="out()">

Page | 53

 <h2> This is inside the division </h2>

 </div>

</body>

</html>

Output

HTML 5 Standard Events
The standard HTML 5 events are listed here for your reference. Here script indicates a
Javascript function to be executed against that event.

Attribute Value Description

Offline script Triggers when the document goes offline

Onabort script Triggers on an abort event

onafterprint script Triggers after the document is printed

onbeforeonload script Triggers before the document loads

onbeforeprint script Triggers before the document is printed

onblur script Triggers when the window loses focus

oncanplay script
Triggers when media can start play, but might has to stop for

buffering

oncanplaythrough script
Triggers when media can be played to the end, without

stopping for buffering

onchange script Triggers when an element changes

onclick script Triggers on a mouse click

Page | 54

oncontextmenu script Triggers when a context menu is triggered

ondblclick script Triggers on a mouse double-click

ondrag script Triggers when an element is dragged

ondragend script Triggers at the end of a drag operation

ondragenter script
Triggers when an element has been dragged to a valid drop

target

ondragleave script
Triggers when an element is being dragged over a valid drop

target

ondragover script Triggers at the start of a drag operation

ondragstart script Triggers at the start of a drag operation

ondrop script Triggers when dragged element is being dropped

ondurationchange script Triggers when the length of the media is changed

onemptied script
Triggers when a media resource element suddenly becomes

empty.

onended script Triggers when media has reach the end

onerror script Triggers when an error occur

onfocus script Triggers when the window gets focus

onformchange script Triggers when a form changes

onforminput script Triggers when a form gets user input

onhaschange script Triggers when the document has change

oninput script Triggers when an element gets user input

oninvalid script Triggers when an element is invalid

onkeydown script Triggers when a key is pressed

onkeypress script Triggers when a key is pressed and released

onkeyup script Triggers when a key is released

onload script Triggers when the document loads

Page | 55

onloadeddata script Triggers when media data is loaded

onloadedmetadata script
Triggers when the duration and other media data of a media

element is loaded

onloadstart script Triggers when the browser starts to load the media data

onmessage script Triggers when the message is triggered

onmousedown script Triggers when a mouse button is pressed

onmousemove script Triggers when the mouse pointer moves

onmouseout script Triggers when the mouse pointer moves out of an element

onmouseover script Triggers when the mouse pointer moves over an element

onmouseup script Triggers when a mouse button is released

onmousewheel script Triggers when the mouse wheel is being rotated

onoffline script Triggers when the document goes offline

onoine script Triggers when the document comes online

ononline script Triggers when the document comes online

onpagehide script Triggers when the window is hidden

onpageshow script Triggers when the window becomes visible

onpause script Triggers when media data is paused

onplay script Triggers when media data is going to start playing

onplaying script Triggers when media data has start playing

onpopstate script Triggers when the window's history changes

onprogress script Triggers when the browser is fetching the media data

onratechange script Triggers when the media data's playing rate has changed

onreadystatechange script Triggers when the ready-state changes

onredo script Triggers when the document performs a redo

onresize script Triggers when the window is resized

Page | 56

onscroll script Triggers when an element's scrollbar is being scrolled

onseeked script
Triggers when a media element's seeking attribute is no longer

true, and the seeking has ended

onseeking script
Triggers when a media element's seeking attribute is true, and

the seeking has begun

onselect script Triggers when an element is selected

onstalled script Triggers when there is an error in fetching media data

onstorage script Triggers when a document loads

onsubmit script Triggers when a form is submitted

onsuspend script
Triggers when the browser has been fetching media data, but

stopped before the entire media file was fetched

ontimeupdate script Triggers when media changes its playing position

onundo script Triggers when a document performs an undo

onunload script Triggers when the user leaves the document

onvolumechange script
Triggers when media changes the volume, also when volume

is set to "mute"

onwaiting script
Triggers when media has stopped playing, but is expected to

resume

Page | 57

JavaScript and Cookies
What are Cookies?
Web Browsers and Servers use HTTP protocol to communicate and HTTP is a stateless
protocol. But for a commercial website, it is required to maintain session information
among different pages. For example, one user registration ends after completing many
pages. But how to maintain users' session information across all the web pages.

In many situations, using cookies is the most efficient method of remembering and
tracking preferences, purchases, commissions, and other information required for better
visitor experience or site statistics.

How It Works?
Your server sends some data to the visitor's browser in the form of a cookie. The browser
may accept the cookie. If it does, it is stored as a plain text record on the visitor's hard
drive. Now, when the visitor arrives at another page on your site, the browser sends the
same cookie to the server for retrieval. Once retrieved, your server knows/remembers
what was stored earlier.

Cookies are a plain text data record of 5 variable-length fields:
• Expires − The date the cookie will expire. If this is blank, the cookie will expire

when the visitor quits the browser.
• Domain − The domain name of your site.
• Path − The path to the directory or web page that set the cookie. This may be

blank if you want to retrieve the cookie from any directory or page.
• Secure − If this field contains the word "secure", then the cookie may only be

retrieved with a secure server. If this field is blank, no such restriction exists.
• Name=Value − Cookies are set and retrieved in the form of key-value pairs

Cookies were originally designed for CGI programming. The data contained in a cookie
is automatically transmitted between the web browser and the web server, so CGI scripts
on the server can read and write cookie values that are stored on the client.

JavaScript can also manipulate cookies using the cookie property of
the Document object. JavaScript can read, create, modify, and delete the cookies that
apply to the current web page.

Storing Cookies
The simplest way to create a cookie is to assign a string value to the document.cookie
object, which looks like this.
document.cookie = "key1=value1;key2=value2;expires=date";

Here the expires attribute is optional. If you provide this attribute with a valid date or
time, then the cookie will expire on a given date or time and thereafter, the cookies' value
will not be accessible.

Page | 58

Note: Cookie values may not include semicolons, commas, or whitespace. For this
reason, you may want to use the JavaScript escape() function to encode the value
before storing it in the cookie. If you do this, you will also have to use the
corresponding unescape() function when you read the cookie value.

Example

Try the following. It sets a customer name in an input cookie.

<html>

<head>

 <script>

 function WriteCookie() {

 if(document.myform.customer.value == "") {

 alert("Enter some value!");

 return;

 }

 cookievalue = escape(document.myform.customer.value) + ";";

 document.cookie = "name=" + cookievalue;

 document.write ("Setting Cookies : " + "name=" + cookievalue);

 }

 </script>

</head>

<body>

 <form name="myform" action="">

 Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie"

 onclick="WriteCookie();"/>

 </form>

</body>

</html>

Output

Now your machine has a cookie called name. You can set multiple cookies using
multiple key = value pairs separated by comma.

Page | 59

Reading Cookies
Reading a cookie is just as simple as writing one, because the value of the
document.cookie object is the cookie. So you can use this string whenever you want to
access the cookie. The document.cookie string will keep a list of name=value pairs
separated by semicolons, where name is the name of a cookie and value is its string
value.

You can use strings' split() function to break a string into key and values as follows:
Example

Try the following example to get all the cookies.

<html>

<head>

 <script>

 function ReadCookie() {

 var allcookies = document.cookie;

 document.write ("All Cookies : " + allcookies);

 // Get all the cookies pairs in an array

 cookiearray = allcookies.split(';');

 // Now take key value pair out of this array

 for(var i=0; i<cookiearray.length; i++) {

 name = cookiearray[i].split('=')[0];

 value = cookiearray[i].split('=')[1];

 document.write ("Key is : "+name+" and Value is : "+value);

 }

 }

 </script>

</head>

<body>

 <form name="myform" action="">

 <p> click the following button and see the result:</p>

 <input type="button" value="Get Cookie" onclick="ReadCookie()"/>

 </form>

</body>

</html>

Note: Here length is a method of Array class which returns the length of an array. We
will discuss Arrays in a separate chapter. By that time, please try to digest it.
Note: There may be some other cookies already set on your machine. The above code
will display all the cookies set on your machine.

Page | 60

Setting Cookies Expiry Date
You can extend the life of a cookie beyond the current browser session by setting an
expiration date and saving the expiry date within the cookie. This can be done by setting
the ‘expires’ attribute to a date and time.

Example

Try the following example. It illustrates how to extend the expiry date of a cookie by 1
Month.

<html>

<head>

 <script>

 function WriteCookie() {

 var now = new Date();

 now.setMonth(now.getMonth() + 1);

 cookievalue = escape(document.myform.customer.value) + ";"

 document.cookie = "name=" + cookievalue;

 document.cookie = "expires=" + now.toUTCString() + ";"

 document.write ("Setting Cookies : " + "name=" + cookievalue);

 }

 </script>

</head>

<body>

 <form name="myform" action="">

 Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie"

 onclick= "WriteCookie()"/>

 </form>

</body>

</html>

Output

Page | 61

Deleting a Cookie
Sometimes you will want to delete a cookie so that subsequent attempts to read the
cookie return nothing. To do this, you just need to set the expiry date to a time in the
past.

Example

Try the following example. It illustrates how to delete a cookie by setting its expiry date
to one month behind the current date.

<html>

<head>

 <script>

 function WriteCookie() {

 var now = new Date();

 now.setMonth(now.getMonth() - 1);

 cookievalue = escape(document.myform.customer.value) + ";"

 document.cookie = "name=" + cookievalue;

 document.cookie = "expires=" + now.toUTCString() + ";"

 document.write("Setting Cookies : " + "name=" + cookievalue);

 }

 </script>

</head>

<body>

 <form name="myform" action="">

 Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie"

 onclick= "WriteCookie()"/>

 </form>

</body>

</html>

Output

Page | 62

Page Redirection
What is Page Redirection?
You might have encountered a situation where you clicked a URL to reach a page X but
internally you were directed to another page Y. It happens due to page redirection. This
concept is different from JavaScript Page Refresh.

There could be various reasons why you would like to redirect a user from the original
page. We are listing down a few of the reasons:

• You did not like the name of your domain and you are moving to a new one. In
such a scenario, you may want to direct all your visitors to the new site. Here you
can maintain your old domain but put a single page with a page redirection such
that all your old domain visitors can come to your new domain.

• You have built-up various pages based on browser versions or their names or may
be based on different countries, then instead of using your server-side page
redirection, you can use client-side page redirection to land your users on the
appropriate page.

• The Search Engines may have already indexed your pages. But while moving to
another domain, you would not like to lose your visitors coming through search
engines. So, you can use client-side page redirection. But keep in mind this
should not be done to fool the search engine, it could lead your site to get banned.

How Page Re-direction Works?
The implementations of Page-Redirection are as follows.

Example 1

It is quite simple to do a page redirect using JavaScript at client side. To redirect your
site visitors to a new page, you just need to add a line in your head section as follows.

<html>

<head>

 <script>

 function Redirect() {

 window.location = "https://www.google.com";

 }

 </script>

</head>

<body>

 <p>

Click the following button, you will be redirected to home page.

 </p>

 <form>

<input type="button" value="Redirect Me"

 onclick="Redirect();" />

 </form>

</body>

</html>

Page | 63

Output

Example 2

You can show an appropriate message to your site visitors before redirecting them to a
new page. This would need a bit time delay to load a new page. The following example
shows how to implement the same. Here setTimeout() is a built-in JavaScript function
which can be used to execute another function after a given time interval.

<html>

<head>

 <script>

 function Redirect() {

 window.location = "https://www.google.com";

 }

 document.write("You will be redirected to main page in 10 sec.");

 setTimeout('Redirect()', 10000);

 </script>

</head>

<body>

</body>

</html>

Output

You will be redirected to www.google.com main page in 10 seconds!

Example 3

The following example shows how to redirect your site visitors onto a different page
based on their browsers.

<html>

<head>

 <script>

 var browsername = navigator.appName;

 if(browsername == "Netscape") {

 window.location = "http://www.location.com/ns.htm";

 } else if (browsername =="Microsoft Internet Explorer") {

 window.location = "http://www.location.com/ie.htm";

 } else {

 window.location = "http://www.location.com/other.htm";

 }

 </script>

</head>

<body>

</body>

</html>

Page | 64

Dialog Boxes
JavaScript supports three important types of dialog boxes. These dialog boxes can be
used to raise and alert, or to get confirmation on any input or to have a kind of input from
the users. Here we will discuss each dialog box one by one.

Alert Dialog Box
An alert dialog box is mostly used to give a warning message to the users. For example,
if one input field requires to enter some text but the user does not provide any input, then
as a part of validation, you can use an alert box to give a warning message.

Nonetheless, an alert box can still be used for friendlier messages. Alert box gives only
one button "OK" to select and proceed.

Example

<html>

<head>

 <script>

 function Warn() {

 alert ("This is a warning message!");

 document.write ("This is a warning message!");

 }

 </script>

</head>

<body>

 <p>Click the following button to see the result: </p>

 <form>

 <input type="button" value="Click Me" onclick="Warn();" />

 </form>

</body>

</html>

Output

Confirmation Dialog Box
A confirmation dialog box is mostly used to take user's consent on any option. It displays
a dialog box with two buttons: OK and Cancel.

If the user clicks on the OK button, the window method confirm() will return true. If the
user clicks on the Cancel button, then confirm() returns false. You can use a
confirmation dialog box as follows.

Page | 65

Example

<html>

<head>

 <script>

 function getConfirmation() {

 var retVal = confirm("Do you want to continue ?");

 if(retVal == true) {

 document.write ("User wants to continue!");

 return true;

 } else {

 document.write ("User does not want to continue!");

 return false;

 }

 }

 </script>

</head>

<body>

 <p>Click the following button to see the result: </p>

 <form>

<input type="button" value="Click Me"

 onclick= "getConfirmation();" />

 </form>

</body>

</html>

Output

Prompt Dialog Box
The prompt dialog box is very useful when you want to pop-up a text box to get user
input. Thus, it enables you to interact with the user. The user needs to fill in the field and
then click OK.

This dialog box is displayed using a method called prompt() which takes two parameters:
(i) a label which you want to display in the text box and (ii) a default string to display in
the text box.

This dialog box has two buttons: OK and Cancel. If the user clicks the OK button, the
window method prompt() will return the entered value from the text box. If the user clicks
the Cancel button, the window method prompt() returns null.

Page | 66

Example

The following example shows how to use a prompt dialog box:

<html>

<head>

 <script>

 function getValue() {

 var retVal = prompt("Enter your name : ", "your name here");

 document.write("You have entered : " + retVal);

 }

 </script>

</head>

<body>

 <p>Click the following button to see the result: </p>

 <form>

 <input type="button" value="Click Me" onclick="getValue();" />

 </form>

</body>

</html>

Output

Page | 67

Void Keyword
void is an important keyword in JavaScript which can be used as a unary operator that
appears before its single operand, which may be of any type. This operator specifies an
expression to be evaluated without returning a value.

Syntax
The syntax of void can be either of the following two:
<head>

 <script>

 void func()

 javascript:void func()

or:

 void(func())

 javascript:void(func())

 </script>

</head>

Example 1

The most common use of this operator is in a client-side javascript: URL, where it allows
you to evaluate an expression for its side-effects without the browser displaying the value
of the evaluated expression.

Here the expression alert ('Warning!!!') is evaluated but it is not loaded back into the
current document:

<html>

<head>

 <script>

 </script>

</head>

<body>

 <p>Click the following...</p>

 Click me!

</body>

</html>

Output

Example 2

Take a look at the following example. The following link does nothing because the
expression "0" has no effect in JavaScript. Here the expression "0" is evaluated, but it is
not loaded back into the current document.

Page | 68

<html>

<head>

 <script>

 </script>

</head>

<body>

 <p>Click the following, This won't react at all...</p>

 Click me!

</body>

</html>

Output

Example 3

Another use of void is to purposely generate the undefined value as follows.

<html>

<head>

 <script>

 function getValue() {

 var a,b,c;

 a = void (b = 5, c = 7);

 document.write('a = ' + a + ' b = ' + b +' c = ' + c);

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="getValue();" />

 </form>

</body>

</html>

Output

Page | 69

Page Printing
Many times you would like to place a button on your webpage to print the content of that
web page via an actual printer. JavaScript helps you to implement this functionality using
the print function of window object.

The JavaScript print function window.print() prints the current web page when executed.
You can call this function directly using the onclick event as shown in the following
example.

Example

Try the following example.

<html>

<head>

 <script>

 </script>

</head>

<body>

 <form>

 <input type="button" value="Print" onclick="window.print()" />

 </form>

</body>

<html>

Output
Although it serves the purpose of getting a printout, it is not a recommended way. A
printer friendly page is really just a page with text, no images, graphics, or advertising.
You can make a page printer friendly in the following ways:

• Make a copy of the page and leave out unwanted text and graphics, then link to
that printer friendly page from the original. Check Example.

• If you do not want to keep an extra copy of a page, then you can mark your
printable text using proper comments like <!-- PRINT STARTS HERE -->..... <!--
PRINT ENDS HERE --> and then you can use PERL or any other script in the
background to purge printable text and display for final printing.

How to Print a Page?
If you don’t find the above facilities on a web page, then you can use the browser's
standard toolbar to get print the web page. Follow the link as follows.
File → Print → Click OK button.

https://www.tutorialspoint.com/javascript/printfriendly.htm

Page | 70

Objects Overview
JavaScript is an Object Oriented Programming (OOP) language. A programming
language can be called object-oriented if it provides four basic capabilities to developers:

• Encapsulation − the capability to store related information, whether data or
methods, together in an object.

• Aggregation − the capability to store one object inside another object.
• Inheritance − the capability of a class to rely upon another class (or number of

classes) for some of its properties and methods.
• Polymorphism − the capability to write one function or method that works in a

variety of different ways.

Objects are composed of attributes. If an attribute contains a function, it is considered to
be a method of the object, otherwise the attribute is considered a property.

Object Properties
Object properties can be any of the three primitive data types, or any of the abstract data
types, such as another object. Object properties are usually variables that are used
internally in the object's methods, but can also be globally visible variables that are used
throughout the page.

The syntax for adding a property to an object is:
objectName.objectProperty = propertyValue;

For example: The following code gets the document title using the "title" property of
the document object.
var str = document.title;

Object Methods
Methods are the functions that let the object do something or let something be done to
it. There is a small difference between a function and a method – at a function is a
standalone unit of statements and a method is attached to an object and can be
referenced by the this keyword.

Methods are useful for everything from displaying the contents of the object to the screen
to performing complex mathematical operations on a group of local properties and
parameters.

For example: Following is a simple example to show how to use the write() method of
document object to write any content on the document.
document.write("This is test");

Page | 71

User-Defined Objects
All user-defined objects and built-in objects are descendants of an object called Object.

The new Operator

The new operator is used to create an instance of an object. To create an object,
the new operator is followed by the constructor method.

In the following example, the constructor methods are Object(), Array(), and Date().
These constructors are built-in JavaScript functions.

var employee = new Object();

var books = new Array("C++", "Perl", "Java");

var day = new Date("August 15, 1947");

The Object() Constructor
A constructor is a function that creates and initializes an object. JavaScript provides a
special constructor function called Object() to build the object. The return value of
the Object() constructor is assigned to a variable.

The variable contains a reference to the new object. The properties assigned to the
object are not variables and are not defined with the var keyword.

Example 1

Try the following example; it demonstrates how to create an Object.

<html>

<head>

 <title>User-defined objects</title>

 <script>

 var book = new Object(); // Create the object

 book.subject = "Perl"; // Assign properties to the object

 book.author = "Mohtashim";

 </script>

</head>

<body>

 <script>

 document.write("Book name is : " + book.subject + "
");

 document.write("Book author is : " + book.author + "
");

 </script>

</body>

</html>

Output
Book name is : Perl

Book author is : Mohtashim

Page | 72

Example 2

This example demonstrates how to create an object with a User-Defined Function.
Here this keyword is used to refer to the object that has been passed to a function.

<html>

<head>

 <title>User-defined objects</title>

 <script>

 function book(title, author) {

 this.title = title;

 this.author = author;

 }

 </script>

</head>

<body>

 <script>

 var myBook = new book("Perl", "Mohtashim");

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

 </script>

</body>

</html>

Output

Book title is : Perl

Book author is : Mohtashim

Defining Methods for an Object
The previous examples demonstrate how the constructor creates the object and assigns
properties. But we need to complete the definition of an object by assigning methods to
it.

Example

Try the following example; it shows how to add a function along with an object.

<html>

<head>

 <title>User-defined objects</title>

 <script>

 // Define a function which will work as a method

 function addPrice(amount) {

 this.price = amount;

 }

 function book(title, author) {

 this.title = title;

 this.author = author;

 this.addPrice = addPrice; // Assign that method as property.

 }

 </script>

</head>

Page | 73

<body>

 <script>

 var myBook = new book("Perl", "Mohtashim");

 myBook.addPrice(100);

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

 document.write("Book price is : " + myBook.price + "
");

 </script>

</body>

</html>

Output
Book title is : Perl

Book author is : Mohtashim

Book price is : 100

The 'with' Keyword
The ‘with’ keyword is used as a kind of shorthand for referencing an object's properties
or methods.

The object specified as an argument to with becomes the default object for the duration
of the block that follows. The properties and methods for the object can be used without
naming the object.

Syntax

The syntax for with object is as follows:
with (object) {

 properties used without the object name and dot

}

Example

Try the following example.

<html>

<head>

 <title>User-defined objects</title>

 <script>

 // Define a function which will work as a method

 function addPrice(amount) {

 with(this) {

 price = amount;

 }

 }

 function book(title, author) {

 this.title = title;

 this.author = author;

 this.price = 0;

 this.addPrice = addPrice; // Assign that method as property.

 }

Page | 74

 </script>

</head>

<body>

 <script>

 var myBook = new book("Perl", "Mohtashim");

 myBook.addPrice(100);

 document.write("Book title is : " + myBook.title + "
");

 document.write("Book author is : " + myBook.author + "
");

 document.write("Book price is : " + myBook.price + "
");

 </script>

</body>

</html>

Output
Book title is : Perl

Book author is : Mohtashim

Book price is : 100

JavaScript Native Objects
JavaScript has several built-in or native objects. These objects are accessible anywhere
in your program and will work the same way in any browser running in any operating
system.
Here is the list of all important JavaScript Native Objects:

• JavaScript Number Object
• JavaScript Boolean Object
• JavaScript String Object
• JavaScript Array Object
• JavaScript Date Object
• JavaScript Math Object
• JavaScript RegExp Object

Page | 75

The Number Object
The Number object represents numerical date, either integers or floating-point numbers.
In general, you do not need to worry about Number objects because the browser
automatically converts number literals to instances of the number class.

Syntax

The syntax for creating a number object is as follows:
var val = new Number(number);

In the place of number, if you provide any non-number argument, then the argument
cannot be converted into a number, it returns NaN (Not-a-Number).

Number Properties
Here is a list of each property and their description.

No. Property & Description

1 MAX_VALUE

The largest possible value a number in JavaScript can have
1.7976931348623157E+308

2 MIN_VALUE

The smallest possible value a number in JavaScript can have 5E-324

3 NaN

Equal to a value that is not a number.

4 NEGATIVE_INFINITY

A value that is less than MIN_VALUE.

5 POSITIVE_INFINITY

A value that is greater than MAX_VALUE

6 prototype

A static property of the Number object. Use the prototype property to assign new
properties and methods to the Number object in the current document

7 constructor

Returns the function that created this object's instance. By default this is the
Number object.

In the following sections, we will take a few examples to demonstrate the properties of
Number.

Page | 76

Number Methods
The Number object contains only the default methods that are a part of every object's
definition.

No. Method & Description

1 toExponential()

Forces a number to display in exponential notation, even if the number is in the
range in which JavaScript normally uses standard notation.

2 toFixed()

Formats a number with a specific number of digits to the right of the decimal.

3 toLocaleString()

Returns a string value version of the current number in a format that may vary
according to a browser's local settings.

4 toPrecision()

Defines how many total digits (including digits to the left and right of the decimal)
to display of a number.

5 toString()

Returns the string representation of the number's value.

6 valueOf()

Returns the number's value.

In the following sections, we will have a few examples to explain the methods of Number.

Page | 77

The Boolean Object
The Boolean object represents two values, either "true" or "false". If value parameter is
omitted or is 0, -0, null, false, NaN, undefined, or the empty string (""), the object has an
initial value of false.

Syntax

Use the following syntax to create a boolean object.
var val = new Boolean(value);

Boolean Properties
Here is a list of the properties of Boolean object:

No. Property & Description

1 constructor

Returns a reference to the Boolean function that created the object.

2 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to illustrate the properties of
Boolean object.

Boolean Methods
Here is a list of the methods of Boolean object and their description.

No. Method & Description

1 toSource()

Returns a string containing the source of the Boolean object; you can use this
string to create an equivalent object.

2 toString()

Returns a string of either "true" or "false" depending upon the value of the object.

3 valueOf()

Returns the primitive value of the Boolean object.

In the following sections, we will have a few examples to demonstrate the usage of the
Boolean methods.

Page | 78

The Strings Object
The String object lets you work with a series of characters; it wraps Javascript's string
primitive data type with a number of helper methods.

As JavaScript automatically converts between string primitives and String objects, you
can call any of the helper methods of the String object on a string primitive.

Syntax

Use the following syntax to create a String object:
var val = new String(string);

The String parameter is a series of characters that has been properly encoded.

String Properties
Here is a list of the properties of String object and their description.

No. Property & Description

1 constructor

Returns a reference to the String function that created the object.

2 length

Returns the length of the string.

3 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to demonstrate the usage of String
properties.

String Methods
Here is a list of the methods available in String object along with their description.

No. Method & Description

1 charAt()

Returns the character at the specified index.

2 charCodeAt()

Returns a number indicating the Unicode value of the character at the given
index.

3 concat()

Combines the text of two strings and returns a new string.

4 indexOf()

Page | 79

Returns the index within the calling String object of the first occurrence of the
specified value, or -1 if not found.

5 lastIndexOf()

Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found.

6 localeCompare()

Returns a number indicating whether a reference string comes before or after or
is the same as the given string in sort order.

7 match()

Used to match a regular expression against a string.

8 replace()

Used to find a match between a regular expression and a string, and to replace
the matched substring with a new substring.

9 search()

Executes the search for a match between a regular expression and a specified
string.

10 slice()

Extracts a section of a string and returns a new string.

11 split()

Splits a String object into an array of strings by separating the string into
substrings.

12 substr()

Returns the characters in a string beginning at the specified location through the
specified number of characters.

13 substring()

Returns the characters in a string between two indexes into the string.

14 toLocaleLowerCase()

The characters within a string are converted to lower case while respecting the
current locale.

15 toLocaleUpperCase()

The characters within a string are converted to upper case while respecting the
current locale.

16 toLowerCase()

Returns the calling string value converted to lower case.

Page | 80

17 toString()

Returns a string representing the specified object.

18 toUpperCase()

Returns the calling string value converted to uppercase.

19 valueOf()

Returns the primitive value of the specified object.

String HTML Wrappers
Here is a list of the methods that return a copy of the string wrapped inside an appropriate
HTML tag.

No. Method & Description

1 anchor()

Creates an HTML anchor that is used as a hypertext target.

2 big()

Creates a string to be displayed in a big font as if it were in a <big> tag.

3 blink()

Creates a string to blink as if it were in a <blink> tag.

4 bold()

Creates a string to be displayed as bold as if it were in a tag.

5 fixed()

Causes a string to be displayed in fixed-pitch font as if it were in a <tt> tag

6 fontcolor()

Causes a string to be displayed in the specified color as if it were in a <font
color="color"> tag.

7 fontsize()

Causes a string to be displayed in the specified font size as if it were in a <font
size="size"> tag.

8 italics()

Causes a string to be italic, as if it were in an <i> tag.

9 link()

Creates an HTML hypertext link that requests another URL.

10 small()

Causes a string to be displayed in a small font, as if it were in a <small> tag.

Page | 81

11 strike()

Causes a string to be displayed as struck-out text, as if it were in a <strike> tag.

12 sub()

Causes a string to be displayed as a subscript, as if it were in a <sub> tag

13 sup()

Causes a string to be displayed as a superscript, as if it were in a <sup> tag

In the following sections, we will have a few examples to demonstrate the usage of String
methods.

Page | 82

The Arrays Object
The Array object lets you store multiple values in a single variable. It stores a fixed-size
sequential collection of elements of the same type. An array is used to store a collection
of data, but it is often more useful to think of an array as a collection of variables of the
same type.

Syntax

Use the following syntax to create an Array object:
var fruits = new Array("apple", "orange", "mango");

The Array parameter is a list of strings or integers. When you specify a single numeric
parameter with the Array constructor, you specify the initial length of the array. The
maximum length allowed for an array is 4,294,967,295.

You can create array by simply assigning values as follows:

var fruits = ["apple", "orange", "mango"];

You will use ordinal numbers to access and to set values inside an array as follows.
fruits[0] is the first element

fruits[1] is the second element

fruits[2] is the third element

Array Properties
Here is a list of the properties of the Array object along with their description.

No. Property & Description

1 constructor

Returns a reference to the array function that created the object.

2 index

The property represents the zero-based index of the match in the string

3 input

This property is only present in arrays created by regular expression matches.

4 length

Reflects the number of elements in an array.

5 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to illustrate the usage of Array
properties.

Page | 83

Array Methods
Here is a list of the methods of the Array object along with their description.

No. Method & Description

1 concat()

Returns a new array comprised of this array joined with other array(s) and/or
value(s).

2 every()

Returns true if every element in this array satisfies the provided testing function.

3 filter()

Creates a new array with all of the elements of this array for which the provided
filtering function returns true.

4 forEach()

Calls a function for each element in the array.

5 indexOf()

Returns the first (least) index of an element within the array equal to the specified
value, or -1 if none is found.

6 join()

Joins all elements of an array into a string.

7 lastIndexOf()

Returns the last (greatest) index of an element within the array equal to the
specified value, or -1 if none is found.

8 map()

Creates a new array with the results of calling a provided function on every
element in this array.

9 pop()

Removes the last element from an array and returns that element.

10 push()

Adds one or more elements to the end of an array and returns the new length of
the array.

11 reduce()

Apply a function simultaneously against two values of the array (from left-to-right)
as to reduce it to a single value.

12 reduceRight()

Page | 84

Apply a function simultaneously against two values of the array (from right-to-
left) as to reduce it to a single value.

13 reverse()

Reverses the order of the elements of an array -- the first becomes the last, and
the last becomes the first.

14 shift()

Removes the first element from an array and returns that element.

15 slice()

Extracts a section of an array and returns a new array.

16 some()

Returns true if at least one element in this array satisfies the provided testing
function.

17 toSource()

Represents the source code of an object

18 sort()

Sorts the elements of an array

19 splice()

Adds and/or removes elements from an array.

20 toString()

Returns a string representing the array and its elements.

21 unshift()

Adds one or more elements to the front of an array and returns the new length
of the array.

In the following sections, we will have a few examples to demonstrate the usage of Array
methods.

Page | 85

The Date Object
The Date object is a datatype built into the JavaScript language. Date objects are created
with the new Date() as shown below.

Once a Date object is created, a number of methods allow you to operate on it. Most
methods simply allow you to get and set the year, month, day, hour, minute, second, and
millisecond fields of the object, using either local time or UTC (universal, or GMT) time.

The ECMAScript standard requires the Date object to be able to represent any date and
time, to millisecond precision, within 100 million days before or after 1/1/1970. This is a
range of plus or minus 273,785 years, so JavaScript can represent date and time till the
year 275755.

Syntax

You can use any of the following syntaxes to create a Date object using Date()
constructor.
new Date()

new Date(milliseconds)

new Date(datestring)

new Date(year,month,date[,hour,minute,second,millisecond])

Note: Parameters in the brackets are always optional.

Here is a description of the parameters:
• No Argument − With no arguments, the Date() constructor creates a Date object

set to the current date and time.
• milliseconds − When one numeric argument is passed, it is taken as the internal

numeric representation of the date in milliseconds, as returned by the getTime()
method. For example, passing the argument 5000 creates a date that represents
five seconds past midnight on 1/1/70.

• datestring − When one string argument is passed, it is a string representation of
a date, in the format accepted by the Date.parse() method.

• 7 agruments − To use the last form of the constructor shown above. Here is a
description of each argument:

o year − Integer value representing the year. For compatibility (in order to
avoid the Y2K problem), you should always specify the year in full; use
1998, rather than 98.

o month − Integer value representing the month, beginning with 0 for
January to 11 for December.

o date − Integer value representing the day of the month.
o hour − Integer value representing the hour of the day (24-hour scale).
o minute − Integer value representing the minute segment of a time reading.
o second − Integer value representing the second segment of a time reading.
o millisecond − Integer value representing the millisecond segment of a time

reading.

Page | 86

Date Properties
Here is a list of the properties of the Date object along with their description.

No. Property & Description

1 constructor

Specifies the function that creates an object's prototype.

2 prototype

The prototype property allows you to add properties and methods to an object

In the following sections, we will have a few examples to demonstrate the usage of
different Date properties.

Date Methods
Here is a list of the methods used with Date and their description.

No. Method & Description

1 Date()

Returns today's date and time

2 getDate()

Returns the day of the month for the specified date according to local time.

3 getDay()

Returns the day of the week for the specified date according to local time.

4 getFullYear()

Returns the year of the specified date according to local time.

5 getHours()

Returns the hour in the specified date according to local time.

6 getMilliseconds()

Returns the milliseconds in the specified date according to local time.

7 getMinutes()

Returns the minutes in the specified date according to local time.

8 getMonth()

Returns the month in the specified date according to local time.

9 getSeconds()

Returns the seconds in the specified date according to local time.

10 getTime()

Page | 87

Returns the numeric value of the specified date as the number of milliseconds
since January 1, 1970, 00:00:00 UTC.

11 getTimezoneOffset()

Returns the time-zone offset in minutes for the current locale.

12 getUTCDate()

Returns the day (date) of the month in the specified date according to universal
time.

13 getUTCDay()

Returns the day of the week in the specified date according to universal time.

14 getUTCFullYear()

Returns the year in the specified date according to universal time.

15 getUTCHours()

Returns the hours in the specified date according to universal time.

16 getUTCMilliseconds()

Returns the milliseconds in the specified date according to universal time.

17 getUTCMinutes()

Returns the minutes in the specified date according to universal time.

18 getUTCMonth()

Returns the month in the specified date according to universal time.

19 getUTCSeconds()

Returns the seconds in the specified date according to universal time.

20 getYear()

Deprecated - Returns the year in the specified date according to local time. Use
getFullYear instead.

21 setDate()

Sets the day of the month for a specified date according to local time.

22 setFullYear()

Sets the full year for a specified date according to local time.

23 setHours()

Sets the hours for a specified date according to local time.

24 setMilliseconds()

Sets the milliseconds for a specified date according to local time.

Page | 88

25 setMinutes()

Sets the minutes for a specified date according to local time.

26 setMonth()

Sets the month for a specified date according to local time.

27 setSeconds()

Sets the seconds for a specified date according to local time.

28 setTime()

Sets the Date object to the time represented by a number of milliseconds since
January 1, 1970, 00:00:00 UTC.

29 setUTCDate()

Sets the day of the month for a specified date according to universal time.

30 setUTCFullYear()

Sets the full year for a specified date according to universal time.

31 setUTCHours()

Sets the hour for a specified date according to universal time.

32 setUTCMilliseconds()

Sets the milliseconds for a specified date according to universal time.

33 setUTCMinutes()

Sets the minutes for a specified date according to universal time.

34 setUTCMonth()

Sets the month for a specified date according to universal time.

35 setUTCSeconds()

Sets the seconds for a specified date according to universal time.

36 setYear()

Deprecated - Sets the year for a specified date according to local time. Use
setFullYear instead.

37 toDateString()

Returns the "date" portion of the Date as a human-readable string.

38 toGMTString()

Deprecated - Converts a date to a string, using the Internet GMT conventions.
Use toUTCString instead.

39 toLocaleDateString()

Page | 89

Returns the "date" portion of the Date as a string, using the current locale's
conventions.

40 toLocaleFormat()

Converts a date to a string, using a format string.

41 toLocaleString()

Converts a date to a string, using the current locale's conventions.

42 toLocaleTimeString()

Returns the "time" portion of the Date as a string, using the current locale's
conventions.

43 toSource()

Returns a string representing the source for an equivalent Date object; you can
use this value to create a new object.

44 toString()

Returns a string representing the specified Date object.

45 toTimeString()

Returns the "time" portion of the Date as a human-readable string.

46 toUTCString()

Converts a date to a string, using the universal time convention.

47 valueOf()

Returns the primitive value of a Date object.

Converts a date to a string, using the universal time convention.

Date Static Methods
In addition to the many instance methods listed previously, the Date object also defines
two static methods. These methods are invoked through the Date() constructor itself.

No. Method & Description

1 Date.parse()

Parses a string representation of a date and time and returns the internal
millisecond representation of that date.

2 Date.UTC()

Returns the millisecond representation of the specified UTC date and time.

In the following sections, we will have a few examples to demonstrate the usages of Date
Static methods.

Page | 90

The Math Object
The math object provides you properties and methods for mathematical constants and
functions. Unlike other global objects, Math is not a constructor. All the properties and
methods of Math are static and can be called by using Math as an object without creating
it.

Thus, you refer to the constant pi as Math.PI and you call the sine function
as Math.sin(x), where x is the method's argument.

Syntax

The syntax to call the properties and methods of Math are as follows
var pi_val = Math.PI;

var sine_val = Math.sin(30);

Math Properties
Here is a list of all the properties of Math and their description.

No. Property & Description

1 E \

Euler's constant and the base of natural logarithms, approximately 2.718.

2 LN2

Natural logarithm of 2, approximately 0.693.

3 LN10

Natural logarithm of 10, approximately 2.302.

4 LOG2E

Base 2 logarithm of E, approximately 1.442.

5 LOG10E

Base 10 logarithm of E, approximately 0.434.

6 PI

Ratio of the circumference of a circle to its diameter, approximately 3.14159.

7 SQRT1_2

Square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

8 SQRT2

Square root of 2, approximately 1.414.

In the following sections, we will have a few examples to demonstrate the usage of Math
properties.

Page | 91

Math Methods
Here is a list of the methods associated with Math object and their description

No. Method & Description

1 abs()

Returns the absolute value of a number.

2 acos()

Returns the arccosine (in radians) of a number.

3 asin()

Returns the arcsine (in radians) of a number.

4 atan()

Returns the arctangent (in radians) of a number.

5 atan2()

Returns the arctangent of the quotient of its arguments.

6 ceil()

Returns the smallest integer greater than or equal to a number.

7 cos()

Returns the cosine of a number.

8 exp()

Returns EN, where N is the argument, and E is Euler's constant, the base of the
natural logarithm.

9 floor()

Returns the largest integer less than or equal to a number.

10 log()

Returns the natural logarithm (base E) of a number.

11 max()

Returns the largest of zero or more numbers.

12 min()

Returns the smallest of zero or more numbers.

13 pow()

Returns base to the exponent power, that is, base exponent.

14 random()

Returns a pseudo-random number between 0 and 1.

Page | 92

15 round()

Returns the value of a number rounded to the nearest integer.

16 sin()

Returns the sine of a number.

17 sqrt()

Returns the square root of a number.

18 tan()

Returns the tangent of a number.

19 toSource()

Returns the string "Math".

In the following sections, we will have a few examples to demonstrate the usage of the
methods associated with Math.

Page | 93

Regular Expressions and RegExp Object
A regular expression is an object that describes a pattern of characters.

The JavaScript RegExp class represents regular expressions, and both String
and RegExp define methods that use regular expressions to perform powerful pattern-
matching and search-and-replace functions on text.

Syntax

A regular expression could be defined with the RegExp () constructor, as follows:
var pattern = new RegExp(pattern, attributes);

or simply

var pattern = /pattern/attributes;

Here is the description of the parameters:
• pattern − A string that specifies the pattern of the regular expression or another

regular expression.
• attributes − An optional string containing any of the "g", "i", and "m" attributes that

specify global, case-insensitive, and multi-line matches, respectively.

Brackets
Brackets ([]) have a special meaning when used in the context of regular expressions.
They are used to find a range of characters.

No. Expression & Description

1 [...]
Any one character between the brackets.

2 [^...]
Any one character not between the brackets.

3 [0-9]
It matches any decimal digit from 0 through 9.

4 [a-z]
It matches any character from lowercase a through lowercase z.

5 [A-Z]
It matches any character from uppercase A through uppercase Z.

6 [a-Z]
It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any
decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase
character ranging from b through v.

Page | 94

Quantifiers
The frequency or position of bracketed character sequences and single characters can
be denoted by a special character. Each special character has a specific connotation.
The +, *, ?, and $ flags all follow a character sequence.

No. Expression & Description

1 p+
It matches any string containing one or more p's.

2 p*
It matches any string containing zero or more p's.

3 p?
It matches any string containing at most one p.

4 p{N}
It matches any string containing a sequence of N p's

5 p{2,3}
It matches any string containing a sequence of two or three p's.

6 p{2, }
It matches any string containing a sequence of at least two p's.

7 p$
It matches any string with p at the end of it.

8 ^p
It matches any string with p at the beginning of it.

Examples

Following examples explain more about matching characters.

No. Expression & Description

1 [^a-zA-Z]
It matches any string not containing any of the characters ranging
from a through z and A through Z.

2 p.p
It matches any string containing p, followed by any character, in turn followed by
another p.

3 ^.{2}$
It matches any string containing exactly two characters.

4 (.*)

Page | 95

It matches any string enclosed within and .

5 p(hp)*
It matches any string containing a p followed by zero or more instances of the
sequence hp.

Literal characters

No. Character & Description

1 Alphanumeric
Itself

2 \0
The NUL character (\u0000)

3 \t
Tab (\u0009

4 \n
Newline (\u000A)

5 \v
Vertical tab (\u000B)

6 \f
Form feed (\u000C)

7 \r
Carriage return (\u000D)

8 \xnn
The Latin character specified by the hexadecimal number nn; for example, \x0A
is the same as \n

9 \uxxxx
The Unicode character specified by the hexadecimal number xxxx; for example,
\u0009 is the same as \t

10 \cX
The control character ^X; for example, \cJ is equivalent to the newline character
\n

Page | 96

Metacharacters
A metacharacter is simply an alphabetical character preceded by a backslash that acts
to give the combination a special meaning.

For instance, you can search for a large sum of money using the '\d'
metacharacter: /([\d]+)000/, Here \d will search for any string of numerical character.

The following table lists a set of metacharacters which can be used in PERL Style
Regular Expressions.

No. Character & Description

1 .
a single character

2 \s
a whitespace character (space, tab, newline)

3 \S
non-whitespace character

4 \d
a digit (0-9)

5 \D
a non-digit

6 \w
a word character (a-z, A-Z, 0-9, _)

7 \W
a non-word character

8 [\b]
a literal backspace (special case).

9 [aeiou]
matches a single character in the given set

10 [^aeiou]
matches a single character outside the given set

11 (foo|bar|baz)
matches any of the alternatives specified

Page | 97

Modifiers
Several modifiers are available that can simplify the way you work with regexps, like
case sensitivity, searching in multiple lines, etc.

No. Modifier & Description

1 i
Perform case-insensitive matching.

2 m
Specifies that if the string has newline or carriage return characters, the ^ and
$ operators will now match against a newline boundary, instead of a string
boundary

3 g
Performs a global matchthat is, find all matches rather than stopping after the
first match.

RegExp Properties
Here is a list of the properties associated with RegExp and their description.

No. Property & Description

1 constructor

Specifies the function that creates an object's prototype.

2 global

Specifies if the "g" modifier is set.

3 ignoreCase

Specifies if the "i" modifier is set.

4 lastIndex

The index at which to start the next match.

5 multiline

Specifies if the "m" modifier is set.

6 source

The text of the pattern.

In the following sections, we will have a few examples to demonstrate the usage of
RegExp properties.

Page | 98

RegExp Methods
Here is a list of the methods associated with RegExp along with their description.

No. Method & Description

1 exec()

Executes a search for a match in its string parameter.

2 test()

Tests for a match in its string parameter.

3 toSource()

Returns an object literal representing the specified object; you can use this value to create a
new object.

4 toString()

Returns a string representing the specified object.

In the following sections, we will have a few examples to demonstrate the usage of
RegExp methods.

Page | 99

Document Object Model or DOM
Every web page resides inside a browser window which can be considered as an object.
A Document object represents the HTML document that is displayed in that window. The
Document object has various properties that refer to other objects which allow access to
and modification of document content.

The way a document content is accessed and modified is called the Document Object
Model, or DOM. The Objects are organized in a hierarchy. This hierarchical structure
applies to the organization of objects in a Web document.

• Window object − Top of the hierarchy. It is the outmost element of the object
hierarchy.

• Document object − Each HTML document that gets loaded into a window
becomes a document object. The document contains the contents of the page.

• Form object − Everything enclosed in the <form>...</form> tags sets the form
object.

• Form control elements − The form object contains all the elements defined for
that object such as text fields, buttons, radio buttons, and checkboxes.

Here is a simple hierarchy of a few important objects:

Page | 100

There are several DOMs in existence. The following sections explain each of these
DOMs in detail and describe how you can use them to access and modify document
content.

• The Legacy DOM − This is the model which was introduced in early versions of
JavaScript language. It is well supported by all browsers, but allows access only
to certain key portions of documents, such as forms, form elements, and images.

• The W3C DOM − This document object model allows access and modification of
all document content and is standardized by the World Wide Web Consortium
(W3C). This model is supported by almost all the modern browsers.

• The IE4 DOM − This document object model was introduced in Version 4 of
Microsoft's Internet Explorer browser. IE 5 and later versions include support for
most basic W3C DOM features.

DOM compatibility
If you want to write a script with the flexibility to use either W3C DOM or IE 4 DOM
depending on their availability, then you can use a capability-testing approach that first
checks for the existence of a method or property to determine whether the browser has
the capability you desire. For example:
if (document.getElementById) {

 // If the W3C method exists, use it

} else if (document.all) {

 // If the all[] array exists, use it

} else {

 // Otherwise use the legacy DOM

}

https://www.tutorialspoint.com/javascript/javascript_legacy_dom.htm
https://www.tutorialspoint.com/javascript/javascript_w3c_dom.htm
https://www.tutorialspoint.com/javascript/javascript_ie4_dom.htm

Page | 101

Errors & Exceptions Handling
There are three types of errors in programming: (a) Syntax Errors, (b) Runtime Errors,
and (c) Logical Errors.

Syntax Errors
Syntax errors, also called parsing errors, occur at compile time in traditional
programming languages and at interpret time in JavaScript.
For example, the following line causes a syntax error because it is missing a closing
parenthesis.
<script>

 window.print();

</script>

When a syntax error occurs in JavaScript, only the code contained within the same
thread as the syntax error is affected and the rest of the code in other threads gets
executed assuming nothing in them depends on the code containing the error.

Runtime Errors
Runtime errors, also called exceptions, occur during execution (after
compilation/interpretation).
For example, the following line causes a runtime error because here the syntax is correct,
but at runtime, it is trying to call a method that does not exist.
<script>

 window.printme();

</script>

Exceptions also affect the thread in which they occur, allowing other JavaScript threads
to continue normal execution.

Logical Errors
Logic errors can be the most difficult type of errors to track down. These errors are not
the result of a syntax or runtime error. Instead, they occur when you make a mistake in
the logic that drives your script and you do not get the result you expected.

You cannot catch those errors, because it depends on your business requirement what
type of logic you want to put in your program.

The try...catch...finally Statement
The latest versions of JavaScript added exception handling capabilities. JavaScript
implements the try...catch...finally construct as well as the throw operator to handle
exceptions.

You can catch programmer-generated and runtime exceptions, but you
cannot catch JavaScript syntax errors.
Here is the try...catch...finally block syntax:

Page | 102

<script>

 try {

 // Code to run

 [break;]

 }

 catch (e) {

 // Code to run if an exception occurs

 [break;]

 }

 [finally {

 // Code that is always executed regardless of

 // an exception occurring

 }]

</script>

The try block must be followed by either exactly one catch block or one finally block (or
one of both). When an exception occurs in the try block, the exception is placed in e and
the catch block is executed. The optional finally block executes unconditionally after
try/catch.

Examples

Here is an example where we are trying to call a non-existing function which in turn is
raising an exception. Let us see how it behaves without try...catch:

<html>

<head>

 <script>

 function myFunc() {

 var a = 100;

 alert("Value of variable a is : " + a);

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

</html>

Output

Now let us try to catch this exception using try...catch and display a user-friendly
message. You can also suppress this message, if you want to hide this error from a user.

Page | 103

<html>

<head>

 <script>

 function myFunc() {

 //Try re-run by comment out this variable declaration

 var a = 100;

 try {

 alert("Value of variable a is : " + a);

 }

 catch (e) {

 alert("Error: " + e.description);

 }

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

</html>

Output

You can use finally block which will always execute unconditionally after the try/catch.
Here is an example.

<html>

<head>

 <script>

 function myFunc() {

 var a = 100;

 try {

 alert("Value of variable a is : " + a);

 }

 catch (e) {

 alert("Error: " + e.description);

 }

 finally {

 alert("Finally block will always execute!");

 }

 }

 </script>

</head>

Page | 104

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

</html>

Output

The throw Statement
You can use throw statement to raise your built-in exceptions or your customized
exceptions. Later these exceptions can be captured and you can take an appropriate
action.

Example

The following example demonstrates how to use a throw statement.

<html>

<head>

 <script>

 function myFunc() {

 var a = 100;

 var b = 0;

 try {

 if (b == 0) {

 throw("Divide by zero error.");

 } else {

 var c = a / b;

 }

 }

 catch (e) {

 alert("Error: " + e);

 }

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

Page | 105

</html>

Output

You can raise an exception in one function using a string, integer, Boolean, or an object
and then you can capture that exception either in the same function as we did above, or
in another function using a try...catch block.

The onerror() Method
The onerror event handler was the first feature to facilitate error handling in JavaScript.
The error event is fired on the window object whenever an exception occurs on the page.

<html>

<head>

 <script>

 window.onerror = function () {

 alert("An error occurred.");

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

</html>

Output

The onerror event handler provides three pieces of information to identify the exact
nature of the error:

• Error message − The same message that the browser would display for the given
error

• URL − The file in which the error occurred
• Line number− The line number in the given URL that caused the error

Page | 106

Here is the example to show how to extract this information.
Example

<html>

<head>

 <script>

 window.onerror = function (msg, url, line) {

 alert("Message : " + msg);

 alert("url : " + url);

 alert("Line number : " + line);

 }

 </script>

</head>

<body>

 <p>Click the following to see the result:</p>

 <form>

 <input type="button" value="Click Me" onclick="myFunc();" />

 </form>

</body>

</html>

Output

You can display extracted information in whatever way you think it is better.
You can use an onerror method, as shown below, to display an error message in case
there is any problem in loading an image.

<img src="myimage.gif" onerror="alert('An error occurred loading the

image.')" />

You can use onerror with many HTML tags to display appropriate messages in case of
errors.

Page | 107

Form Validation
Form validation normally used to occur at the server, after the client had entered all the
necessary data and then pressed the Submit button. If the data entered by a client was
incorrect or was simply missing, the server would have to send all the data back to the
client and request that the form be resubmitted with correct information. This was really
a lengthy process which used to put a lot of burden on the server.

JavaScript provides a way to validate form's data on the client's computer before sending
it to the web server. Form validation generally performs two functions.

• Basic Validation − First of all, the form must be checked to make sure all the
mandatory fields are filled in. It would require just a loop through each field in the
form and check for data.

• Data Format Validation − Secondly, the data that is entered must be checked for
correct form and value. Your code must include appropriate logic to test
correctness of data.

Example

We will take an example to understand the process of validation. Here is a simple form
in html format.

<html>

<head>

 <title>Form Validation</title>

 <script>

 // Form validation code will come here.

 </script>

</head>

<body>

 <form action="/cgi-bin/test.cgi" name="myForm"

 onsubmit="return(validate());">

 <table cellspacing="2" cellpadding="2" border="1">

 <tr>

 <td align="right">Name</td>

 <td><input type="text" name="Name" /></td>

 </tr>

 <tr>

 <td align="right">EMail</td>

 <td><input type="text" name="EMail" /></td>

 </tr>

 <tr>

 <td align="right">Zip Code</td>

 <td><input type="text" name="Zip" /></td>

 </tr>

 <tr>

 <td align="right">Country</td>

Page | 108

 <td>

 <select name="Country">

 <option value="-1" selected>[choose yours]</option>

 <option value="1">USA</option>

 <option value="2">UK</option>

 <option value="3">INDIA</option>

 </select>

 </td>

 </tr>

 <tr>

 <td align="right"></td>

 <td><input type="submit" value="Submit" /></td>

 </tr>

 </table>

 </form>

</body>

</html>

Output

Basic Form Validation
First let us see how to do a basic form validation. In the above form, we are
calling validate() to validate data when onsubmit event is occurring. The following code
shows the implementation of this validate() function.

<script>

 // Form validation code will come here.

 function validate() {

 if(document.myForm.Name.value == "") {

 alert("Please provide your name!");

 document.myForm.Name.focus() ;

 return false;

 }

 if(document.myForm.EMail.value == "") {

 alert("Please provide your Email!");

 document.myForm.EMail.focus() ;

 return false;

 }

Page | 109

 if(document.myForm.Zip.value == "" ||

 isNaN(document.myForm.Zip.value) ||

 document.myForm.Zip.value.length != 5) {

 alert("Please provide a zip in the format #####.");

 document.myForm.Zip.focus() ;

 return false;

 }

 if(document.myForm.Country.value == "-1") {

 alert("Please provide your country!");

 return false;

 }

 return(true);

 }

</script>

Data Format Validation
Now we will see how we can validate our entered form data before submitting it to the
web server.

The following example shows how to validate an entered email address. An email
address must contain at least a ‘@’ sign and a dot (.). Also, the ‘@’ must not be the first
character of the email address, and the last dot must at least be one character after the
‘@’ sign.

Example

Try the following code for email validation.

<script>

 function validateEmail() {

 var emailID = document.myForm.EMail.value;

 atpos = emailID.indexOf("@");

 dotpos = emailID.lastIndexOf(".");

 if (atpos < 1 || (dotpos - atpos < 2)) {

 alert("Please enter correct email ID")

 document.myForm.EMail.focus() ;

 return false;

 }

 return(true);

 }

</script>

Page | 110

Animation
You can use JavaScript to create a complex animation having, but not limited to, the
following elements:

• Fireworks
• Fade Effect
• Roll-in or Roll-out
• Page-in or Page-out
• Object movements

You might be interested in existing JavaScript based animation library: Script.Aculo.us.

This course provides a basic understanding of how to use JavaScript to create an
animation.

JavaScript can be used to move a number of DOM elements (, <div> or any other
HTML element) around the page according to some sort of pattern determined by a
logical equation or function.

JavaScript provides the following two functions to be frequently used in animation
programs:

• setTimeout(function, duration) − This function
calls function after duration milliseconds from now.

• setInterval(function, duration) − This function calls function after
every duration milliseconds.

• clearTimeout(setTimeout_variable) − This function calls clears any timer set by
the setTimeout() functions.

JavaScript can also set a number of attributes of a DOM object including its position on
the screen. You can set top and left attribute of an object to position it anywhere on the
screen. Here is its syntax.
// Set distance from left edge of the screen.

object.style.left = distance in pixels or points;

or

// Set distance from top edge of the screen.

object.style.top = distance in pixels or points;

Manual Animation
So let's implement one simple animation using DOM object properties and JavaScript
functions as follows. The following list contains different DOM methods.

• We are using the JavaScript function getElementById() to get a DOM object and
then assigning it to a global variable imgObj.

• We have defined an initialization function init() to initialize imgObj where we have
set its position and left attributes.

• We are calling initialization function at the time of window load.
• Finally, we are calling moveRight() function to increase the left distance by 10

pixels. You could also set it to a negative value to move it to the left side.

https://www.tutorialspoint.com/script.aculo.us/scriptaculous_effects.htm

Page | 111

Example

Try the following example.

<html>

<head>

 <title>JavaScript Animation</title>

 <script>

 var imgObj = null;

 function init() {

 imgObj = document.getElementById('myImage');

 imgObj.style.position= 'relative';

 imgObj.style.left = '0px';

 }

 function moveRight() {

 imgObj.style.left = parseInt(imgObj.style.left) + 10 + 'px';

 }

 window.onload = init;

 </script>

</head>

<body>

 <form>

 <p>Click button below to move the image to right</p>

 <input type="button" value="Click Me" onclick="moveRight();" />

 </form>

</body>

</html>

Output

Page | 112

Automated Animation
In the above example, we saw how an image moves to right with every click. We can
automate this process by using the JavaScript function setTimeout() as follows:
Here we have added more methods. So let's see what is new here:

• The moveRight() function is calling setTimeout() function to set the position
of imgObj.

• We have added a new function stop() to clear the timer set
by setTimeout() function and to set the object at its initial position.

Example

Try the following example code.

<html>

<head>

 <title>JavaScript Animation</title>

 <script>

 var imgObj = null;

 var animate ;

 function init() {

 imgObj = document.getElementById('myImage');

 imgObj.style.position= 'relative';

 imgObj.style.left = '0px';

 }

 function moveRight() {

 imgObj.style.left = parseInt(imgObj.style.left) + 10 + 'px';

 animate = setTimeout(moveRight,20); // call moveRight in 20msec

 }

 function stop() {

 clearTimeout(animate);

 imgObj.style.left = '0px';

 }

 window.onload = init;

 </script>

</head>

<body>

 <form>

 <p>Click the buttons below to handle animation</p>

 <input type="button" value="Start" onclick="moveRight();" />

 <input type="button" value="Stop" onclick="stop();" />

 </form>

</body>

</html>

Page | 113

Rollover with a Mouse Event
Here is a simple example showing image rollover with a mouse event.
Let's see what we are using in the following example:

• At the time of loading this page, the ‘if’ statement checks for the existence of the
image object. If the image object is unavailable, this block will not be executed.

• The Image() constructor creates and preloads a new image object called image1.
• The src property is assigned the name of the external image file called

/images/html.gif.
• Similarly, we have created image2 object and assigned /images/http.gif in this

object.
• The # (hash mark) disables the link so that the browser does not try to go to a URL

when clicked. This link is an image.
• The onMouseOver event handler is triggered when the user's mouse moves onto

the link, and the onMouseOut event handler is triggered when the user's mouse
moves away from the link (image).

• When the mouse moves over the image, the HTTP image changes from the first
image to the second one. When the mouse is moved away from the image, the
original image is displayed.

• When the mouse is moved away from the link, the initial image html.gif will
reappear on the screen.

<html>

<head>

 <title>Rollover with a Mouse Events</title>

 <script>

 if(document.images) {

 var image1 = new Image(); // Preload an image

 image1.src = "../images/durian.jpg";

 var image2 = new Image(); // Preload second image

 image2.src = "../images/Orange.jpg";

 }

 </script>

</head>

<body>

 <p>Move your mouse over the image to see the result</p>

 <a href="#" onMouseOver="document.myImage.src=image2.src;"

 onMouseOut="document.myImage.src=image1.src;">

</body>

</html>

Page | 114

Multimedia
The JavaScript navigator object includes a child object called plugins. This object is an
array, with one entry for each plug-in installed on the browser. The navigator.plugins
object is supported only by Netscape, Firefox, and Mozilla only.

Example

Here is an example that shows how to list down all the plug-on installed in your browser:

<html>

<head>

 <title>List of Plug-Ins</title>

</head>

<body>

 <script>

 document.write("<table border='1'>");

 document.write("<tr>");

 document.write("<th>Plug-in Name</th>");

 document.write("<th>Filename</th>");

 document.write("<th>Description</th>");

 document.write("</tr>");

 for (i = 0; i<navigator.plugins.length; i++) {

 document.write("<tr><td>");

 document.write(navigator.plugins[i].name);

 document.write("</td><td>");

 document.write(navigator.plugins[i].filename);

 document.write("</td><td>");

 document.write(navigator.plugins[i].description);

 document.write("</td></tr>");

 }

 document.write("</table>");

 </script>

</body>

</html>

Output

Page | 115

Checking for Plug-Ins
Each plug-in has an entry in the array. Each entry has the following properties:

• name − is the name of the plug-in.
• filename − is the executable file that was loaded to install the plug-in.
• description − is a description of the plug-in, supplied by the developer.
• mimeTypes − is an array with one entry for each MIME type supported by the

plug-in.

You can use these properties in a script to find out the installed plug-ins, and then using
JavaScript, you can play appropriate multimedia file. Take a look at the following
example.

<html>

<head>

 <title>Using Plug-Ins</title>

</head>

<body>

 <script>

 media = navigator.mimeTypes["video/mp4"];

 if (media) {

 document.write("<embed src='foo.mp4' height=100 width=100>");

 } else {

 document.write("");

 }

 </script>

</body>

</html>

Output

NOTE: Here we are using HTML <embed> tag to embed a multimedia file.

Page | 116

Debugging
Every now and then, developers commit mistakes while coding. A mistake in a program
or a script is referred to as a bug.

The process of finding and fixing bugs is called debugging and is a normal part of the
development process. This section covers tools and techniques that can help you with
debugging tasks.

Error Messages in IE
The most basic way to track down errors is by turning on error information in your
browser. By default, Internet Explorer shows an error icon in the status bar when an error
occurs on the page.

Double-clicking this icon takes you to a dialog box showing information about the specific
error that occurred.

Since this icon is easy to overlook, Internet Explorer gives you the option to automatically
show the Error dialog box whenever an error occurs.

To enable this option, select Tools → Internet Options → Advanced tab. and then
finally check the "Display a Notification About Every Script Error" box option as
shown below:

Page | 117

Error Messages in Firefox or Mozilla
Other browsers like Firefox, Netscape, and Mozilla send error messages to a special
window called the JavaScript Console or Error Consol. To view the console,
select Tools → Error Consol or Web Development.

Unfortunately, since these browsers give no visual indication when an error occurs, you
must keep the Console open and watch for errors as your script executes.

Error Notifications
Error notifications that show up on Console or through Internet Explorer dialog boxes are
the result of both syntax and runtime errors. These error notifications include the line
number at which the error occurred.

If you are using Firefox, then you can click on the error available in the error console to
go to the exact line in the script having error.

How to debug a Script
There are various ways to debug your JavaScript:

Use a JavaScript Validator

One way to check your JavaScript code for strange bugs is to run it through a program
that checks it to make sure it is valid and that it follows the official syntax rules of the
language. These programs are called validating parsers or just validators for short,
and often come with commercial HTML and JavaScript editors.

The most convenient validator for JavaScript is Douglas Crockford's JavaScript Lint,
which is available for free at Douglas Crockford's JavaScript Lint.

Simply visit that web page, paste your JavaScript (Only JavaScript) code into the text
area provided, and click the jslint button. This program will parse through your JavaScript

http://www.jslint.com/

Page | 118

code, ensuring that all the variable and function definitions follow the correct syntax. It
will also check JavaScript statements, such as if and while, to ensure they too follow the
correct format

Add Debugging Code to Your Programs

You can use the alert() or document.write() methods in your program to debug your
code. For example, you might write something as follows:

var debugging = true;

var whichImage = "widget";

if(debugging)

 alert("Calls swapImage() with argument: " + whichImage);

var swapStatus = swapImage(whichImage);

if(debugging)

 alert("Exits swapImage() with swapStatus=" + swapStatus);

By examining the content and order of the alert() as they appear, you can examine the
health of your program very easily.

Use a JavaScript Debugger

A debugger is an application that places all aspects of script execution under the control
of the programmer. Debuggers provide fine-grained control over the state of the script
through an interface that allows you to examine and set values as well as control the
flow of execution.

Once a script has been loaded into a debugger, it can be run one line at a time or
instructed to halt at certain breakpoints. Once execution is halted, the programmer can
examine the state of the script and its variables in order to determine if something is
amiss. You can also watch variables for changes in their values.

The latest version of the Mozilla JavaScript Debugger (code-named Venkman) for both
Mozilla and Netscape browsers can be downloaded
at http://www.hacksrus.com/~ginda/venkman

http://www.hacksrus.com/~ginda/venkman

Page | 119

Useful Tips for Developers
You can keep the following tips in mind to reduce the number of errors in your scripts
and simplify the debugging process:

• Use plenty of comments. Comments enable you to explain why you wrote the
script the way you did and to explain particularly difficult sections of code.

• Always use indentation to make your code easy to read. Indenting statements
also makes it easier for you to match up beginning and ending tags, curly braces,
and other HTML and script elements.

• Write modular code. Whenever possible, group your statements into functions.
Functions let you group related statements, and test and reuse portions of code
with minimal effort.

• Be consistent in the way you name your variables and functions. Try using names
that are long enough to be meaningful and that describe the contents of the
variable or the purpose of the function.

• Use consistent syntax when naming variables and functions. In other words, keep
them all lowercase or all uppercase; if you prefer Camel-Back notation, use it
consistently.

• Test long scripts in a modular fashion. In other words, do not try to write the
entire script before testing any portion of it. Write a piece and get it to work before
adding the next portion of code.

• Use descriptive variable and function names and avoid using single-character
names.

• Watch your quotation marks. Remember that quotation marks are used in pairs
around strings and that both quotation marks must be of the same style (either
single or double).

• Watch your equal signs. You should not used a single = for comparison purpose.
• Declare variables explicitly using the var keyword.

Page | 120

Image Map
You can use JavaScript to create client-side image map. Client-side image maps are
enabled by the usemap attribute for the tag and defined by special <map> and
<area> extension tags.

The image that is going to form the map is inserted into the page using the
element as normal, except that it carries an extra attribute called usemap. The value of
the usemap attribute is the value of the name attribute on the <map> element, which you
are about to meet, preceded by a pound or hash sign.

The <map> element actually creates the map for the image and usually follows directly
after the element. It acts as a container for the <area /> elements that actually
define the clickable hotspots. The <map> element carries only one attribute,
the name attribute, which is the name that identifies the map. This is how the
element knows which <map> element to use.

The <area> element specifies the shape and the coordinates that define the boundaries
of each clickable hotspot.

The following code combines imagemaps and JavaScript to produce a message in a text
box when the mouse is moved over different parts of an image.

<html>

<head>

 <title>Using JavaScript Image Map</title>

 <script>

 function showObject(name) {

 document.myform.stage.value = name

 }

 </script>

</head>

<body>

 <form name="myform">

 <input type="text" name="stage" size="20" />

 </form>

 <!-- Create Mappings -->

 <img src="../images/workplace.jpg" alt="Workplace"

 border="0" usemap="#workmap"/>

 <map name="workmap">

 <area shape="rect"

 coords="34,44,270,350"

 href="Computer.html" alt="Computer"

 target="_self"

 onMouseOver="showObject('Computer')"

 onMouseOut="showCourse('')"/>

 <area shape="rect"

Page | 121

 coords="290,172,333,250"

 href="phone.html"

 alt=" Phone"

 target="_self"

 onMouseOver="showCourse('Phone')"

 onMouseOut="showCourse('')"/>

 <area shape="circle"

 coords="337,300,44"

 href="coffee.htm" alt="Coffee"

 target="_self"

 onMouseOver="showCourse('Coffee')"

 onMouseOut="showCourse('')"/>

 </map>

</body>

</html>

Output

You can feel the map concept by placing the mouse cursor on the image object.

Page | 122

Browsers Compatibility
It is important to understand the differences between different browsers in order to
handle each in the way it is expected. So it is important to know which browser your web
page is running in.

To get information about the browser your webpage is currently running in, use the built-
in navigator object.

Navigator Properties
There are several Navigator related properties that you can use in your Web page. The
following is a list of the names and descriptions of each.

No. Property & Description

1 appCodeName
This property is a string that contains the code name of the browser, Netscape
for Netscape and Microsoft Internet Explorer for Internet Explorer.

2 appVersion
This property is a string that contains the version of the browser as well as other
useful information such as its language and compatibility.

3 language
This property contains the two-letter abbreviation for the language that is used
by the browser. Netscape only.

4 mimTypes[]
This property is an array that contains all MIME types supported by the client.
Netscape only.

5 platform[]
This property is a string that contains the platform for which the browser was
compiled."Win32" for 32-bit Windows operating systems

6 plugins[]
This property is an array containing all the plug-ins that have been installed on
the client. Netscape only.

7 userAgent[]
This property is a string that contains the code name and version of the browser.
This value is sent to the originating server to identify the client.

Page | 123

Navigator Methods
There are several Navigator-specific methods. Here is a list of their names and
descriptions.

No. Description

1 javaEnabled()
This method determines if JavaScript is enabled in the client. If JavaScript is
enabled, this method returns true; otherwise, it returns false.

2 plugings.refresh
This method makes newly installed plug-ins available and populates the plugins
array with all new plug-in names. Netscape only.

3 preference(name,value)
This method allows a signed script to get and set some Netscape preferences.
If the second parameter is omitted, this method will return the value of the
specified preference; otherwise, it sets the value. Netscape only.

4 taintEnabled()
This method returns true if data tainting is enabled; false otherwise.

Browser Detection
There is a simple JavaScript which can be used to find out the name of a browser and
then accordingly an HTML page can be served to the user.

<html>

<head>

 <title>Browser Detection Example</title>

</head>

<body>

 <script>

 var userAgent = navigator.userAgent;

 var opera = (userAgent.indexOf('Opera') != -1);

 var ie = (userAgent.indexOf('MSIE') != -1);

 var gecko = (userAgent.indexOf('Gecko') != -1);

 var netscape = (userAgent.indexOf('Mozilla') != -1);

 var version = navigator.appVersion;

 if (opera) {

 document.write("Opera based browser");

 // Keep your opera specific URL here.

 } else if (gecko) {

 document.write("Mozilla based browser");

 // Keep your gecko specific URL here.

 } else if (ie) {

 document.write("IE based browser");

 // Keep your IE specific URL here.

 } else if (netscape) {

Page | 124

 document.write("Netscape based browser");

 // Keep your Netscape specific URL here.

 } else {

 document.write("Unknown browser");

 }

 // You can include version to along with any above condition.

 document.write("
 Browser version info : " + version);

 </script>

</body>

</html>

Output

Mozilla based browser

Browser version info : 5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/88.0.4324.182 Safari/537.36

